QUAD 06 (Q6) Phase 1B transfer function plots are attached. We had a hard time obtaining good coherence in the Transverse TF, so it is a bit hashy. Will try again.
Most notably is that, like Q8, the second pitch mode frequency is unexpectedly pushed upward on the main chain. Recall, we never found the mechanism to fix it on Q8. Interestingly, both the Q8 and Q6 assemblies are of the same batch of wires and are fresh builds, but by 2 different assembly teams, and on 2 different solid stack/test stand units. Q8 is an ETM type of QUAD while Q6 is an ITM QUAD, but both main chains have the same pendulum parameters - both are detailed in the 'wireloop' model.
The Q6 data is plotted as QUADTST.
We've checked that all wire diameters are as per the specs and that the wire segment clamps are seated properly on the masses. We've also checked that the wire segments have been assembled with the proper assymetry as per specs (looking for something obvious).
Attached are pix of this unit, in case someone wants to look at them. To me, they look just like the last few QUADs we've built, including Q8.
Maybe this is a long shot, but we've exhausted all the simple causes...could the top wire be the wrong material? If the modulus of elasticity was higher, within a factor of 2 from where it is supposed to be, that would explain this strange pitch mode.
One way to test this is to measure the violin modes of the topmost wire in situ and see if it is right. Or maybe more simply, cut some wire from this wire stock, hang some wieght off of it, and measure its violin mode.
The correct 1.1 mm diameter wire should have a violin mode of
frequency in Hz = sqrt(tension/0.0067)/(2*L)
where 0.0067 is the mass per unit length.
For example tungsten has a modulus about 2 times higher than what we are supposed to have. If for whatever reason we ended up with a tungsten wire, it would have an in-situ violin mode in the low 200s of Hz, rather than the 332 Hz spec (much denser than the usual piano wire).
Or even more simply, you could weigh some length of wire. The piano wire should be something close to 7 g/m. If you get different value from that, then the wire is the wrong material.
To confirm Brett's latest suggest regarding the wrong wire: We have 2 rolls of 1.1mm diameter top wire here at LHO which could have possibly been used for QUAD builds. Both are labeled as the correct stuff. We weighed a 1m segment from each spool. One measures 7.1g, the other measures 7.3g.
To be continued...
Another sanity check:
The Top Mass blade sets used for these 3 pitch-problematic QUADs are as follows:
Q6 - SET 10
Q8 - SET 8 - although I can't find the actual records
Q9 - SET 2
Q7 - SET 7 - still to be tested, unknown pitch frequency TFs
The SETs go from SET 1 being the most STIFF to SET 16 being the most SOFT. So, the sets we are using for the 3IFO QUADs are somewhat scattered or in the middle of the pack. They are not all clustered at the soft end, nor all at the stiff end...
And here's the spectra of this Q6. Note, the lowest stage (L2) does not have flags during the all-metal Phase 1 assembly, so the spectra plots of L2 are junk.
And now attached are a damped TF from each R0 and M0. As we all have noted in SUS - damped TFs on Phase 1 test stands are not useful since the damping is a function of the code on the out-dated test stands and the loops are not tuned very well. Long story short, there is a little bit of damping evident, given whatever filters and gains are loaded, and we can see healthy excitations run through the suspension so all seems well with damping capabilities of Q6.