H1 ISC
(CAL, CDS, DetChar, GRD, INS, IOO, ISC, SEI, SUS, SYS)
J. Kissel, J. Warner, J. Romie, H. Radkins, N. Kijbunchoo, K. Izumi, G. Moreno
SUMMARY: We just finished ~7 HOUR lock stretch at our best sensitivity ever, between 32 and 34 [Mpc]!
We've all been pleasantly surprised this morning to see that the lock stretch that Sheila Evan, Dan and Lisa started last night lasted the entire night. Unfortunately, as of ~10 minutes ago (~8:40a PDT, ~15:40 UTC), there are GIANT glitches and non-stationarity that keep popping up, spoiling the sensitivity. There's no one in the LVEA, so we're not at all sure what's caused the sudden change in behaviour. Wind seems fine at ~5 [mph], ground motion is still pretty low, the 1-3 [Hz] hasn't even come up yet.
Anxious to explore things, Jim installed some low-pass filters in the HAM5 and HAM6 ISIs at around 8:45 to try to reduce scattering / acoustic coupling to the ISI, and Kiwamu began exploring MICH coupling to DARM.
But, as I write this log, we lost lock. However, for DetChar purposes, one can assume the detector was undisturbed from March 27 9:00 UTC to March 27 ~15:00 UTC.
Looking at spectrograms of DARM during the first hour of lock (first plot) and the last hour (second plot), it seems to me that the noise is more or less stationary, but there are huge glitches. They are so big that you can even see them easily in time domain (third plot). A zoom in is visible in the fourth plot. They look like bursts of oscillations at about 5.5 kHz.
We now believe that the glitches we had in the lock stretch from this morning was due to the ISS which repeatedly unlocked. This is a typical behavior of the ISS when the diffraction power is too low. Indeed the diffracted power had been 4% on average during the time when the interferometer was locked. There was clear correlation between arm cavities' power and the ISS diffracted power. See the attached trend of some relevant channels. Elli adjusted the diffracted power in this after noon so that the diffracted power is now at 8% with only the inner loop closed.
Looking at glitch-to-glitch coupling between auxiliary channels and DARM shows a large number of glitches in the > 1kHz range that are coincident with glitches in CARM, REFL 9 PIT/YAW, and REFL 45 PIT. Interestingly, CARM is highly correlated with high frequency glitches until about 12:00:00 UTC, at which point REFL 45 PIT becomes the stronger veto.
It looks like REFL 45 Q PIT was offset by about 2500 counts during the lock, is it possible that intensity fluctuations on an uncentered WFS are showing up as alignment glitches? I've attached a time series covering 2 hours of the lock from 11 UTC to 13 UTC.
We're currently running code to see if the lower frequency (50-200 Hz) glitches are caused by zero-crossings in the 18-bit DACs.
I've attached an Omicron glitchgram for the whole day, it seems as if the higher frequency glitches and the glitches populating the 50-200 Hz region are the two dominant populations right now. There are also a few high SNR glitches scattered around in the 100-400 Hz region that we'll follow up individually.
-2^16 Crossings in ETMY L3 ESD causing many of the glitches in this lock:
In addition to the arches reported in 17452 and 17506 we found DAC glitches in this lock when ETMY L3 ESD DAC outputs were crossing -2^16 counts. Attached is a PDF with a few examples that were lined up by hand. We will follow up more closely to see if other suspensions and penultimate stages also add glitches. Note: At Livingston, SUS MC2 M3 DACs were also a problem.
If you'd like to see the primary culprits from this long lock, here is a tar file of omega scans (thanks to Joe Areeda) of the loudest 100 glitches between 30 and 200Hz. The vertical lines that repeat are DAC glitches, the crazy wandering features are the arches described in the pages linked above, those two mechanisms account for most of the glitches we see.