Eric Quintero, Rana
Summary:
Studying coherences between the ground and the LSC drives, we find that we can reduce the longitudinal forces to the mirrors in the 0.1-0.3 Hz band by a factor of ~2-5 in most cases, for both sites.
Details:
The recent success of the length to angle (L2A) feedforward at LLO led us to wonder about the source of so much low frequency motion. The SEI loop feedback and feedforward has been heavily tuned over the years to reduce much of the motion. By looking at the coherence and transfer function between the ground seismometers and the LSC*OUT signals (in a similar manner to what we did with the length to angle in May 2016), we are able to make an upper limit estimate on how much this can be reduced by implementing a global FF (just as we did in early 2010 for the S6 run using HEPI/PEPi).
We took 1 hour of data from 1000 UTC on March 12. The RMS of the ground motion in the 0.1-0.3 Hz band was 0.5 um/s, which is high, but only moderately high for the winter time. The summer time motion is more like 0.1 um/s.
The attached plots show:
upper plot: LSC control signal & LSC control signal after ideal subtraction
lower plot: top 5 signals used in the subtraction (in practice, using ~3 signals is enough to do the biggest part of the subtraction)
This subtraction is done on a bin-by-bin basis in the frequency domain, and as such, its a best case estimate. In reality, implementing a causal filter which avoids injecting too much noise at 3-20 Hz will degrade the subtraction performance somewhat. We are now working on making a frequency dependent weighting so as to make realizable filters.
In the attached channel list, you can see that all ground seismometers and tiltmeters were used.
The BRS's were being used at the time this data was taken, this is the nominal seismic configuration. The window you looked at was a relatively low wind time (~5 m/s according to the summary pages), so end station floor tilt probably wasn't a big effect. And based on a study RobertS did (alog 27170), we think tilt is only coherent over short distances, so the BRS probably wouldn't directly show up here. What we use the BRS for is doing tilt subtraction from the end station STS, and use that super-sensor for FF on the end station ISIs. We store that tilt subtracted ground signal in the science frames (since June 2016) as H1:ISI-GND_SENSCOR_ETMX/Y_SUPER_X/Y_OUT_DQ.