Displaying report 1-1 of 1.
Reports until 16:38, Monday 23 July 2012
H1 SUS
betsy.weaver@LIGO.ORG - posted 16:38, Monday 23 July 2012 - last comment - 19:12, Tuesday 24 July 2012(3545)
More MC2 Phase 2b testing

This afternoon we obtained the spectra of the lower stages (M2 and M3) of MC2 in both the damped and undamped states (using plothsts_spectra.m).  The spectra were taken over the lunch hour so the LVEA activity should have been pretty quiet.  Data was committed to svn.  WIll post a PDF shortly.

As well, I used awggui to try to verify that I could see drive on the coils of these lower stages (for example, exc H1:SUS-MC2_M2_COILOUTF_UL_EXC while watching the OSEMINF_OUT_DQ channel for UL).  This will need to continue later as at first pass, I couldn't see much signal on the M2 AOSEMs.

Comments related to this report
jeffrey.kissel@LIGO.ORG - 08:53, Tuesday 24 July 2012 (3559)
More details / results to come, but I figured we'd post the results for people to independently peruse, while we continue to discuss.

Conclusions at this point:
 - The top to top (undamped) transfer functions look mostly excellent
 - The only thing that has raised a yellowish flag is the first longitudinal mode at 0.68 Hz shows a sharp notch just above it in frequency. Given that the rest of the magnitude looks entirely clean (and independently looking at the DTT .xmls confirming good coherence), I'm confident it's a real feature. However -- after exploring the model in detail we (re)remembered that the first L mode is at the exact same frequency as the first T mode. So, perhaps, in this particular instance the two modes are just different enough to break the normally degenerate mode.
 - Spectra look as expected given the out-of-vacuum environment. The results are notably and encouragingly *less* noisy at high frequency, confirming that the surprisingly large excess motion at high frequency seen in this SUS's Phase 1b results was merely excessive ambient noise in the X1 Test Arena.

To come:
- Damped transfer functions (results taken, just not yet analyzed)
- TF comparisons with other, previous results
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 19:12, Tuesday 24 July 2012 (3576)
Status Update:

I attach new versions of the above plots, which now includes the 2012-07-20, damping-loops-closed transfer functions compared against MC2's phase 1b measurement (2012-06-15) and a token L1 HSTS (L1 SUS MC1, 2012-06-04). The conclusions are still the same; everything looks pretty darn good, except for the non-degeneracy of the first Longitudinal and first Transverse mode. Note that the non-degeneracy disappears with damping loops on, so the loops are modifying the dynamics enough that there is no further "cross-coupling" (if indeed it is a mechanical/physical cross-coupling and not just sensor cross-coupling from not-perfectly-aligned-flags or something).

HOWEVER, after looking into the assembly tolerance for Roll, we found that, as currently constructed, MC2 is out of spec. So, Betsy and Travis will need to adjust the Roll of the optic (on Thursday), and therefore all measurements will have to be re-done, since it's a major change that would affect the dynamics. (Booooo.)

Thinking out loud: Hrmm... if the Roll is out of spec ... Roll is fundamentally coupled with Transverse ... maybe the roll in the optic is modifying (increasing? decreasing? the frequency -- can't tell) the first Transverse / Roll mode of the SUS, breaking the above mentioned degeneracy ... maybe this is why it's obvious in this SUS and not any SUS's prior? But this still doesn't explain how a L / P drive could produce R / T, which should be completely orthogonal degrees of freedom.
Non-image files attached to this comment
Displaying report 1-1 of 1.