Summary:
It seems that the supply voltage for thermistors is oscillating, the frequency depends on whether or not the supply is loaded with thermistors (830mHz open to 1.66Hz fully connected to the in-chamber thermistors), the amplitude of the oscillation jumps seemingly randomly, and this is also happening for the unused Beckhoff module for the yet-to-be-installed second T-SAMS unit, all measured at the back of the Beckhoff chassis. (Can't we measure this from Beckhoff itself, without me going to the floor?)
Fil and Fernando quickly set up the same Beckhoff module in the lab and didn't observe this. Could we swap or maybe restart the modules in the chassis?
As of now, Beckhoff cable is disconnected from the back of the heater driver chassis. (I'm applying DetChar-Request tag just so people know, but we're just changing from one no-comb configuration to the other.)
Detaisls:
Since the past findings about OM2 and 1.66Hz comb (alogs 73367, 73233, 72967 72241 and 72061) didn't make sense, I went to the floor and remeasured the comb in the Beckhoff heater output (which goes to the heater driver input) as well as thermistor pins in the back of the heater driver chassis while Beckhoff connection was intact.
Turns out that all of these things share the same frequency but the voltage across thermistor pins was ~3 orders of magnitude larger than Beckhoff heater driver output pins (pin 9 and 19) (the latter were referenced from the driver board ground as it's common mode for both pins). I used a scope on battery and the thermistor voltage was like roughly 1Vpp 1.66Hz rectangular wave (1st pic). Yellow is the voltage across pin10 and 23 (across thermistor 1), blue is pin9 and 22 (thermistor 2) of the DB25 at the back of the driver chassis when the Beckhoff cable was still connected. Voltage difference seemed to have come from the temperature difference of the thermistors (I disconnected the Beckhoff cable and measured the thermistor 1 and 2 resistance incl. cables to be 7.41k and 4.08k, respectively). When I disconnected the cable from the chassis and just measured the pin10-23 and pin9-22 voltage coming from the cable (picture 2), they were both about 1.2V pp. This is supposed to be the source voltage for thermisters. The frequency slowed down by about a factor of 2 (832mHz) when the thermistors were disconnected.
For your convenience, below is a table of which pins are what (see e.g. E1100530 and D2000212). Note that thermistors themselves only have two pins, therefore supply and readback pins are bundled together in chamber as shown. Supply is presumably a reference voltage supplied through a reference resistor.
which thermistor? | DB25 pin | Beckhoff | in chamber |
1 | 10 | Temperature Supply 1A+ | thermistor 1 pin 1 (10&12 bundled together in chamber) |
12 | Temperature Readback 1A+ | ||
23 | Temperature Supply 1A- | thermistor 1 pin 2 (23&25 bundled together in chamber) |
|
25 | Temperature Readback 1A- | ||
2 | 9 | Temperature Supply 2A+ | thermistor 2 pin 1 (9&11 bundled together in chamber) |
11 | Temperature Readback 2A+ | ||
22 | Temperature Supply 2A- | thermistor 2 pin 2 (22&24 bundled together in chamber) |
|
24 | Temperature Readback 2A- |
Went to the CER, disconnected the cable from the back of the Beckhoff chassis and did the same measurement. Frequency didn't change but the amplitude was much smaller (~280mVpp instead of 1.2Vpp) for a while, but suddenly the amplitude of the thermistor 1 supply changed back to 1.2V (pic 3). Nuts. When the beckhoff cable was reconnected (and the connection to in-chamber thermistor was restored) the frequency went back to 1.66Hz (picture 4).
Picture 5 shows pin 10-23 (thermistor 1 supply) and pin12-25 (thermistor 1 readback, which is not connected to anything). Picture 6 is the same thing but for the unused Beckhoff unit for the second T-SAMS. It's strange that the same thing is happening in two independent units. Picture 7 is the thermistor 1 supply and pin 6-19 (voltage output for the heater driver). It really seems that this is a problem of the supply voltage.
I checked the 24V power strip for the Beckhoff chassis but it was good (pic 8 and 9).
Fil and Fernando set up EL3692, which is the Beckhoff unit used for Thermistors. They didn't observe this oscillation behavior.
I wanted to do some injections into thermistors to see how this couples to DARM but didn't have time.
Well, this seems to be a feature! The EL3692 terminal has 2 measurement inputs for resistance but only one ADC and current source. In alternating mode it switches between the 2 channels continuously. From the scope traces, the measurement time per channel looks like about ~400 ms. This is consistent with the data sheet. We expect about ~0.16 mA of current in the range between 10 Ω and 10 kΩ.
Fil, Marc, Keita, Daniel, Fernando Fil and I set a test bank in the lab and verified the square pulses found are part of the features of the EL3692 terminal when both channel reading is set. Then we implemented a configuration using a continuous reading over the channel 1 and one shot reading over the channel 2 (under request by a raising edge on the Start Conversion input in the module, that will be never used). Finally the scopes show the continuous signal in the channel 1 with some minor noise component that is still in analysis (basically 60Hz and 12Hz) however this virtually solves the main problem with the square pulses. One ECR should be open to double the quantity of EL3692 in the places where reading in both channels are necessary since just one channel provides continuous reading at this point. Note: the autorange feature was left intact so the new configuration will not cause any limitation in the resistor range to be measured and also will keep the same PDO to not break the Epics configuration. Attached: scopes and the EL3692, configuration applied to the EL3962 and spectral analysis for the noise signals.
WP 11501 Daniel Keita Fernando Today we configured the one channel reading on the two Beckhoff EL3692 modules for the PSL IO Chassis. After restarting the system Keita Daniel and I were to the rack to scope the thermistor channels we verified the absence of the square pulses reported initially. Finally the module R20 CH2 was rewired to R21 CH1 and configured in the system accordingly. Attached the picture including the R20 and R21 EL3692 modules for reference.
After having a solution for the issue duplicating the number of EL3692 modules, and ECR and FRS ticket have been created: ECR: https://dcc.ligo.org/E2300408-v1 FRS ticket: https://services1.ligo-la.caltech.edu/FRS/show_bug.cgi?id=29563
Daniel, Fernando
As part of the WP11506 a new configuration was loaded into the Beckhoff system which includes the 1-channel continuos reading for the EL3692 terminals. The change included the rewiring in the TCS Corner EtherCAT chassis TSAMS consisting of connecting the second channel in the EL3692 (R20) to the first channel in the terminal EL3692 (R21) to match the TwinCAT configuration added. The disconnected wires are not currently connected ot any thermistor on the floor.