Displaying report 1-1 of 1.
Reports until 13:15, Thursday 29 May 2025
X1 DTS
joshua.freed@LIGO.ORG - posted 13:15, Thursday 29 May 2025 - last comment - 14:43, Friday 06 June 2025(84627)
SPI Double Mixer Finalization Part3

J. Freed,

Spur Problem

As discussed in part 1, the Double Mixer has good phase noise around the carrier frequency to about a 100Hz out where SPI operates, however, it also has signals every 4096Hz away from the carrier.  I had assumed that it was an issue relating to phase and amplitude mismatch on the phase delayer, but after adding attinuators to correct the missmatch, it helped, excepecially the 80Mhz + 4096Hz signal saw a ~15dB improvement. DM_Att.pdf. However, the double mixer still has large signals and the largest did not change with the addition of the attinuators.

I realize now that the problem lies with the mixers themselves as by the nature of a mixer they create spurs on the output. 

DM_Mixer.pdf Shows the output of a single mixer. Along with the expected 80MHz - 4096 Hz and 80MHz + 4096 Hz there is extra peaks which i believe is caused by the Spurs of the mixer. The largest spur is at 80Mhz + 12,288Hz. This spur is actually in phase with the main signal and is thus construtivly interfered at the power combiner. 

I do not know how to get rid of this spur as it is so close to the main carrier signal. For fun, I used a combination of Marki LC filter Design Tool and LTspice to simulate adding a filter to the end of the system to reduce the 80Mhz + 12,288Hz spur, but even an 8th order elliptical filter would only reduce the spur by ~0.04dB due to how close it is to the main signal. For fun I went to 20th order elliptic and it only reduced it by ~0.1dB. In addition, with nonstandard parts for a 20th order elliptic it got reduced by ~4dB. I am unsure of any other method to reduce the spur.


Double Mixer is a Single Sideband Mixer

I realize now that the basic design of the double mixer actually exists and is fairly common, it is called a Single Sideband Mixer (SSB mixer). Thanks to Brian, who gave me one of these mixers to test, I have something to compair the results  

DMvsIRM.pdf Shows a plot of the double mixer vs a SSB mixer. The SSB mixer is tuned to 80MHz+4096Hz as apposed to the Double Mixers 80MHz -4096Hz but comparisons can still be made. For starters, the double mixers 80Mhz+4096Hz sideband equivalent is much better in the double mixer vs the SSB. However this comes at the cost of the 80Mhz+12,288Hz sideband equivalent which is much better in the SSB. In summary, just based on this single graph, the double mixer is more likely to be better for SPI for 2 reasons. One, we have already found out that SPI would be senstive to the 80MHz+4096Hz sideband equivalent. And two, if there is a way to attinuate these spurs by filtering, the spur further away from the carrier could be more easily attinuated.


High order modes filtering

Ive already discussed that adding fliters does not help the area around 80MHz. However, it does help with higher order modes

DM_Filter.pdf Shows a plot of adding a MC80-10-4AA bandpass filter from Lark engenering that has a bandwidth of 10MHz and a center of 80MHz at different positions in the Double Mixer. The best place to put one seems to be just before the amplifier, not entirly sure if adding one is nessisary to SPI but it should be good for reduceing a possible noise source.

Non-image files attached to this report
Comments related to this report
joshua.freed@LIGO.ORG - 14:55, Friday 30 May 2025 (84674)

High-Order Mode Filtering

The MC80-10-4AA that I listed actually filters by reflections, which is not helping to remove those signals from going back into the mixer. If a filter is going to be added, something like the ZXLF-K151+ would work much better.

joshua.freed@LIGO.ORG - 14:43, Friday 06 June 2025 (84869)

I now realize a filter should be unnecessary as the AOMs are expected to have high insertion loss at frequencies not around 80Mhz, AOM-Tuneability.png, basically acting as a band-pass filter anyways. 

 

Images attached to this comment
Displaying report 1-1 of 1.