Displaying reports 63101-63120 of 77255.Go to page Start 3152 3153 3154 3155 3156 3157 3158 3159 3160 End
Reports until 12:29, Tuesday 21 October 2014
H1 IOO
keita.kawabe@LIGO.ORG - posted 12:29, Tuesday 21 October 2014 (14549)
IMC REFL PD whitening reduced

After the file server was restarted and guardian reloaded, IMC had a hard time relocking because MC2 velocity was kind of big and the fast fringe crossing kept saturating the RFPD DC output after the whitening.

This PD is connected to standard ISC RFPD interface where you have two-stage selectable whitening switch, and both of the whitening were ON. I disabled both and disabled the correcponding digital dewhites (FM2 and 3 in H1:IMC-REFL_DC).

H1:IMC-REFL_DC_SW1R was 1020 before, now it's 60.

H1 CDS
james.batch@LIGO.ORG - posted 12:20, Tuesday 21 October 2014 (14548)
Guardian medm screens fixed for the operator workstation
The operator workstation can now open individual guardian screens from the GUARD_OVERVIEW screen.  There was an alias for sitemap for the operator account that needed to be removed.
H1 CDS
daniel.sigg@LIGO.ORG - posted 12:06, Tuesday 21 October 2014 (14547)
EtherCAT system updates

The following changes were done to the Beckhoff systems:

  1. All EtherCAT systems were patched to the most recent windows update.
  2. Note: if an update contains a new Intel network driver for the EtherCAT NIC, the corresponding TwinCAT drivers need to be reinstalled through system manager|options|show RT Ethernet compatible devices.
  3. New and updated EtherCAT device description files wre loaded.
  4. Also added the EL9962 system manager extensions.
  5. The corner H1ECATC1 system did not start TwinCAT upon boot because it still used an outdated password.
  6. PCal in EY was hooked up by Fil and enabled in the system manager. EX was done yesterday
  7. LSC-OMC whitening channels have been changed to OMC-DCPD.
  8. OMC medm screens were updated by Dan H.
  9. HAM6 picomotor names were updated.
  10. All PLC programs were reloaded from the most recent subversion revision.
  11. A conflict with the picomotor library was encountered in H1ECATY1. Offending files were saved in a subdir.
  12. Burt restore to 7:10 this morning.
  13. New EPICS channel lists were copied to the frame builder.
H1 CDS (DAQ)
james.batch@LIGO.ORG - posted 11:55, Tuesday 21 October 2014 (14546)
Monit reconfigured for DAQ and front ends.
I reconfigured the network access for monit on all DAQ and front end computers to allow access from the control room workstations. This required restarting monit on all DAQ and front ends.
H1 SUS
edmond.merilh@LIGO.ORG - posted 11:08, Tuesday 21 October 2014 (14545)
Upgraded AI Filter boards for ESD at Both End Stations

The AI v4 filter boards at both end stations were traded out for v6 boards. These AI chassis service the ESD.

End X - Removed Filter boards: S1101720-v4 & S1101716-v4. Replaced them with S1104975-v6 & S1300334-v6 Location SUS-XC1-U26

End Y - Removed Filter boards: S1101890-v4 & S1101884-v4. Replaced them with S1201006-v6 & S1203674-v6 Location SUS-YC1-U26

 

Replaced them with S1201006-v6 & S1203674-v6
H1 CDS
cyrus.reed@LIGO.ORG - posted 10:34, Tuesday 21 October 2014 - last comment - 11:00, Tuesday 21 October 2014(14542)
h1broadcast0 Maintenance
I'll be taking down h1broadcast0 to check the IPMI configuration which is either not working, or incorrect.  This will interrupt DAQ data flow to the DMT systems while the machine is down (no other DAQ systems should be affected).  I will post a follow up entry when the work is complete.
Comments related to this report
cyrus.reed@LIGO.ORG - 11:00, Tuesday 21 October 2014 (14544)
h1broadcast0 should now be back up.  Note there were some other (unrelated) DAQ issues/restarts at the same time.
H1 SEI
fabrice.matichard@LIGO.ORG - posted 09:47, Tuesday 21 October 2014 - last comment - 16:37, Sunday 26 October 2014(14537)
Seismic Performance: Windy days, Normal days, ISI Off. Room from improvement at ETMY.

Goals:

I have been looking into recent data in order to:

- compare the performance form units to units

- correlate ISI stage 1 performance with optical lever motions

- compare winday times with regular times

 

Plots Desciption:

There are 4 figures attached. Each one display one hour of data.

- The first figure is for the windy afternoon on Saturday October 11th reported by Sheila

- The second figure is for Sunday October 19th at 3am

- The second figure is for Monday October 20th at 3am

- The second figure is for this morning, October 21st at 3am

 

In each of the four plots attached:

- the three plots in the top row show the ISI longitudinal motion (along the arm axis). Left plot is time series, middle is ASD, right is RMS.

- the three plots in the middle row show the optical lever pitch motion. (Left plot is time series, middle is ASD, right is RMS.)

- the three plots in the Bottom row show the optical lever pitch motion. (Left plot is time series, middle is ASD, right is RMS.)

 

Comments:

Windy day (first plot):

In the first plot (windy day), the ISI stage 1 RMS motion is about 10 times higher than usual, around 1000 nm/s RMS instead to about 100 nm/s in normal days. The Stage 1 motion is dominated by features below 50 mHz, most likely tilt as reported by Krishna.

The optical lever pitch motion is about a factor of 3 or 4 higher than usual (around 100 nRar instead of a few tens). Though the ISI is shaking at 50 mHz, the RMS of the optical lever is still dominated by the suspension mode at 0.5 Hz. 

ETMY test mass pitch is moving twice as much as the others. This can clearly be correlated with the ISI motion at the suspension modes. We need to look into ETMY (something wrong in the blend? not enough loop gain? sensor noise?)

The test masses Yaw motion is dominated by features at the micro-seism, that are probably self inflicted (see comments for the third plot). ISI low performence on ETMY between 0.2 Hz and 1 Hz also affects the performance of the Yaw motion of this test mass.

 

Regular input motion, night time (second plot):

The ISI motion is pretty consistent from chamber to chamber, except for ETMY that should perform better above 0.25 Hz.

The Pitch motion of all test masses is dominated by the 0.5 Hz suspension mode.

The Yaw motion of all test masses is dominated by the micro-seism.

 

ISI off:

the third plot (data taken yesterday night) is quite interesting, as it looks like ITMY ISI was damped only.

In this configuration, ITMY pitch RMS motion is 10 times higher than the other units (near 1000 nrad RMS)

The Yaw motion is much lower (tens of nrad), but the three units isolated don't perform better than the unit damped. The unit damped is dominated by suspension modes features. The units isolated are dominated by micro-seism features.

 

Fourth plot (this morning at 3 amd);

all ISI are ON. They all perform similarly at low frequencies (below 0.5Hz), but optical levers RMS values are high and not consitent from units to units. Maybe some commissioning activities... to be checked.

 

Conclusion:

- we need to look into ETMY, and improve its performance at the suspension frequencies

- on windy times, and assuming alignment is the priority: for reducing the test masses pitch RMS value, we might want to try to improve the ISI performance at 0.5 Hz at the cost of further increasing the very low frequency motion. For yaw, we need to reduce the self inflicted amplification at the micro-seism.

- on regular times, we need to reduce the apparently self-inflicted yaw motion at the micro-seism

Images attached to this report
Comments related to this report
jeffrey.kissel@LIGO.ORG - 10:25, Tuesday 21 October 2014 (14541)
Recall that I haven't yet refined the optical lever calibration on the ETMs. My goal is to get to that during maintenance  today (Tuesday, Oct 21 2014).
jim.warner@LIGO.ORG - 13:45, Tuesday 21 October 2014 (14553)

Fabrice pointed out at a telecon this morning that the performance of ETMY was not as good at 1hz as the other chambers. I looked at the filters I designed, and the gain at 1hz was pretty low (only about 10, see pg 2 on first attachment). This was caused by a too aggressive plant fit, which ate up too much gain at ~1hz, something I gotten smarter about since April when I designed these loops. I've touched up just this loop in matlab (second attachment), but I'll wait for a window to install it. Kiwamu said ths hasn't caused problems for them yet, but it would be nice for all platforms to have the "same" performance.

Non-image files attached to this comment
H1 AOS (PSL)
peter.king@LIGO.ORG - posted 09:12, Tuesday 21 October 2014 (14538)
PSL Weeklies
PSL weekly report of various parameters.
Images attached to this report
H1 AOS (PSL)
peter.king@LIGO.ORG - posted 09:10, Tuesday 21 October 2014 (14533)
PSL Diagnostic Breadboard Scan
The relative power noise looks nominal.  Better than the reference measurement below 10 Hz by about a factor of 2.  About the same everywhere else.

The frequency noise measurements (control and error signals) looks better than the reference measurements above ~100 Hz.  About the same for frequencies
below.

The beam pointing looks nominal.  Within requirements.

The mode scan looks the same as ones conducted before.  Higher order mode count, 53.  Higher order mode power 4.8%.  A little higher than previously.

The ISS measurement was obtained with the PMC transmitting (according to the MEDM screen) 23.5 W and reflecting 2.2 W.  The measurement is better than
the reference measurement below 40 Hz and is the same above 40 Hz.  The general level is slightly better than 2.0E-8 out of loop.

Non-image files attached to this report
H1 CDS
james.batch@LIGO.ORG - posted 08:57, Tuesday 21 October 2014 (14536)
Rebooted /ligo file server
The cdsfs0 file server which contains /ligo crashed, reason unknown.  Rebooted without power cycle, it came back without any problems.
H1 SEI
hugh.radkins@LIGO.ORG - posted 08:23, Tuesday 21 October 2014 (14535)
WBSC1 ITMY ISI Local2Cartesian & back are all correct. ISI-HEPI L4C Filters Good Safe.snap made

Copied all the Cal & Sym filters from the HEPI L4CINF banks to the ISI-HEPI L4CINF filters.  I did this with cut & paste in foton.  Corrected the ISI-HEPI L4C2CART matrix.  Safe.snap made.  ISI back under Guardian control.

The HEPI matrices are still in need of correcting but that will be more invasive.

H1 CDS (DAQ)
david.barker@LIGO.ORG - posted 08:18, Tuesday 21 October 2014 (14534)
CDS model and DAQ restart report, Sunday and Monday 19th and 20th October 2014

model restarts logged for Sun 19/Oct/2014
2014_10_19 03:33 h1fw1
2014_10_19 22:26 h1fw1
2014_10_19 23:28 h1fw1

model restarts logged for Mon 20/Oct/2014
2014_10_20 08:28 h1fw1

all restarts unexpected.

H1 ISC
kiwamu.izumi@LIGO.ORG - posted 22:36, Monday 20 October 2014 - last comment - 10:20, Tuesday 21 October 2014(14532)
OMC scan measurement: power recycling gain for 45 MHz = 21

Alexa, Evan, Dan, Kiwamu,

We measured the power recycling gain for the 45 MHz sidebands in the PRMI sideband lock condition. It was estimated to be about 21 according to our OMC scan measurements.

(Method)

We measured the power of a 45 MHz RF sideband at the dark port using the OMC. We measured it in two different configurations -- (1) when PRMI was locked and (2) single bounce from ITMX. We did not measure that of the 9 MHz sidebands because we had a difficulty indentifying it from the carrier light.

Based on the measurement, we estimated the power recycling gain for the 45 MHz sideband. Assumptions we made are:

The measurement were made with 10 W of the light incident on IMC. Note that POP_RF18 was approximately 160 uW during the measurement.

(Result)

Pprmi_at_45MHz = 6.6 (in DCPD_SUM) -- this is the highest we could get by utilizing the dither ASC loops. Without a dither loop, DCSUM would have fluctuated between 3 and 5 presumably due to some alignment fluctuation.

Psinglebounce_at_45MHz = 0.288 (in DCPD_SUM)

(Recycling gain) = Pprmi / Psinglebounce * Tp *Tbs * Rbs / Ri / sin( 2 * pi * lsch * fm / c)^2

where fm is the modulation frequency and it was set to 5 * 9100230 Hz. This gave us a power recycling gain of 21.3.

Comments related to this report
kiwamu.izumi@LIGO.ORG - 10:20, Tuesday 21 October 2014 (14540)

Actually, I made a small mistake in the calculation as usual -- I did not need to include the ITM reflectivity in the equation because it cancels out between the two measurements.

This does not change the estimation of the recycling gain so much. It still should be Gp = 21.0.

H1 ISC
kiwamu.izumi@LIGO.ORG - posted 21:21, Monday 20 October 2014 - last comment - 12:56, Tuesday 21 October 2014(14531)
indeed multiple zero crossing in SRCL

Alexa, Evan, Kiwamu

We observed some new features which are related to the SRC mode hopping.

Comments related to this report
kiwamu.izumi@LIGO.ORG - 10:41, Tuesday 21 October 2014 (14543)

The SRCL error signal was calibrated in [nm] from a measurement of the open-loop transfer function last night. However the number does not seem right.

Last night, the UGF of the loop was estimated to be 27 Hz, which corresponded to an optical gain of about 5.0 x 1010 [cnts /meters] at the input of the LSC-SRCL filter. Therefore an offset of -800 cnts that we introduced at the SRCL input corresponds to a displacement of 16 [nm] ... which is actually already out of the linear range  close to the edge of the linear range (because the linear range is 20-ish nm 40 nm in full width for SRCL). Something is not right.

kiwamu.izumi@LIGO.ORG - 12:56, Tuesday 21 October 2014 (14550)

I made an independent and more accurate calibration for SRCL. The result suggested that my previous calibration was off by roughly a factor of 2. The optical gain of SRCL should be 1.65 x 1011 [cnts/meters].

Therefore the 800 counts offset that we put yesterday should correspond to a displacement of 4.8 nm. We could sweep SRCL up to 6000 counts or 36 nm in one side of the fringe yesterday.

 

(Calibration method)

In the previous entry, I used the SRCL UGF in order to estimate the optical gain in counts/meters. This time, I used a sideband build-up signal which should give us a direct measure of the SRCL linewdith or liner range.

The plot below shows time series of some signals when we were changing the SRCL offset last night:

As shown in the plot, as we swept the offset of SRCL, the sideband power of SRC observed by AS_RF90 decreased/increased. When the sideband power becomes the half of the maximum,  SRCL must be at the point where the linear range ends. Since we already know how big the linear range should be in terms of the SRCL displacement, we can calibrate the optical gain.

 

The plot below shows a x-y projection of AS_RF90 and SRCL_OFFSET from the same data as shown above:

By performing fitting, I was able to estimate the half-wdith at half-maximum (HWHM). I found the HWHM to be 3300 counts in terms of SRCL_OFFSET. According to galaxy (https://galaxy.ligo.caltech.edu/optics/), the transmissivity of SRM is T_{srm} = 37% for SRM-w14 and this gives a finesse of about 13. Therefore the HWHM should be (1064 nm ) / 4 / finesse = 20 nm. 

Finally the calibration is calculated as (3300 counts) / (20 nm) = 1.65 x 1011 [counts/meters].

Images attached to this comment
H1 ISC
alexan.staley@LIGO.ORG - posted 20:35, Monday 20 October 2014 - last comment - 21:16, Monday 20 October 2014(14525)
DRMI REFLAIR Demod phases

Kiwamu, Alexa

Today we looked at the demod phases for the REFLAIR RFPDs. The result was inconclusive. We excited PRM_M3_LOCK_L at 3.25Hz with an amplitude of 10000cts. We then examined the magnitude of transfer function of the I/Q error signals to this excitation at 1W, 5W, 7W, and 10W incident laser power. The data was taken with RELFAIR_A_RF45 at -135deg, RELFAIR_A_RF9 at 93deg, REFLAIR_B_RF27 at 107.8deg, and RELFAIR_B_135 at -30 deg following our nominal configuration. Attached show the magnitude vs power for the 1f and 3f signals, along with a linear fit. RELFAIR_A_RF9 behaves as expected with a linear reponse. During the measurement, REFLAIR_A_RF45 was not very coherent with the excitation, which explains why 45Q's response does not look very good. REFLAIR_B_RF27 looks fine as well; but RELFAIR_B_RF135 does not look right; it appears I might have missed a sign flip in the TF. But no major red flags...

Non-image files attached to this report
Comments related to this report
alexan.staley@LIGO.ORG - 21:16, Monday 20 October 2014 (14530)

Note: At some point after this measurement we had PRMI locked, and we improved the REFLAIR_A_RF45 I/Q ratio. The new phase of REFLAIR_A_RF45 is now 143 deg. This improved the DRMI calibrated noise spectrum of MICH around 10 Hz.

Displaying reports 63101-63120 of 77255.Go to page Start 3152 3153 3154 3155 3156 3157 3158 3159 3160 End