Displaying reports 72961-72980 of 76990.Go to page Start 3645 3646 3647 3648 3649 3650 3651 3652 3653 End
Reports until 18:28, Monday 10 September 2012
H2 ISC
keita.kawabe@LIGO.ORG - posted 18:28, Monday 10 September 2012 - last comment - 19:00, Monday 10 September 2012(4148)
First look of PSL using one arm (Jax, Dick, Keita)

Attached is the calibrated spectrum with PSL (red). References are all with the old refcav setup. Apparently PSL doesn't look good, but don't take it too seriously (yet).

When I took the data I've turned off the PSL laser room HEPA, PSL ante room HEPA and PSL room A/Cs off, and turned the make up air down to 30% level with an approval of Michael Rodruck.

Power fluctuation in the cavity is ridiculously large (you can see that the beam spot is moving by the beam radius or more on the ETM), which might be due to high wind today. I'll take another shot tomorrow.

Also it might be that the Prometheus temperature is too low. It's not that I'm seeing that Prometheus is misbehaving, but in the past Bram experienced some problem operating it at too low or too high a temperature. I want to unlock the PSL refcav and raise the crystal temperature a bit but I don't think I'm qualified for PSL room.

BTW we tried turning ISS on and it didn't make any difference.

Images attached to this report
Comments related to this report
keita.kawabe@LIGO.ORG - 19:00, Monday 10 September 2012 (4149)

I left PSL fans and ACs like the following:

PSL laser room HEPA is off.

PSL ante room HEPA is running with 55% level.

ACs are on.

Make up air is running with 75% level.

According to LLO PSL fan manual, when nobody is in the room you can leave laser room HEPA off, ante room HEPA 50% and make up air 75% so this should be OK.

 

However, the first person to go into PSL tomorrow should set the laser room HEPA back to 75% or more and the ante room HEPA back to 100%.

H1 SEI
hugh.radkins@LIGO.ORG - posted 16:14, Monday 10 September 2012 (4147)
Initial Alignment of HAM1 Support Table complete
Jim & Hugh

Based on our dial indicators, we had a little more aligning to do left over from Friday.  We did that and then fine tuned the elevation, again with the dial indicators.
Next we opened up the Chamber and shot the position with the Sokkia SetIIX.  The East/West position was right there (y=0), of course the machine only reads out to the millimeter.  The North/South position was due west of monument LV25 with the west end of the Support Table 2" (<0.1mm south) and the east end 14" or <0.2mm north.
So with the position confirmed we checked the level of the Table.  It is 0.1mm low and level to +-0.1mm.  Tomorrow we'll start building the stack, if we have the forklift.

Attached are my notes from this for your perusal.
Non-image files attached to this report
H2 ISC
keita.kawabe@LIGO.ORG - posted 12:33, Monday 10 September 2012 - last comment - 13:48, Monday 10 September 2012(4145)
PLL locks with PSL (Jax, Keita)

Went to EY. The power coming out of the fiber was 174 uW.

Originally the Prometheus red crystal temperature was 42.36 degree C. We ended up lowering it down to 31.39 degree C to get a beat note.

The green power dropped by about 20% judging from the QPD sums (e.g. QPDB sum used to be 7500, now it is 6000) and H2:ALS-Y_REFL_B_PWR_INMON (uset to be 12700 unlocked, now it's more like 10200). I changed the offset in REFL_B_PWR accordingly. This means that the old 8000 counts is now 6400 counts.

The waveplate for the fiber output was adjusted to maximize the beat note, which was about -39dbm. Turned on the servo, adjusted the temperature knob several times to relieve the slow temperature servo, and it worked OK.

We measured the OLTF of the PLL even though there's no reason it should change. The UGF was about 23 kHz.

See Jax's entry about the green power going to the chamber and the actual data of the PLL OLTF.

Now the arm locks.

Comments related to this report
jaclyn.sanders@LIGO.ORG - 13:48, Monday 10 September 2012 (4146)

The output of the 532 nm laser at the lower temperature is 32.6 mW. The power going into the arm is 18.6 mW.

The PLL OLTF data from the SR785 is attached.

Non-image files attached to this comment
H1 SUS
betsy.weaver@LIGO.ORG - posted 11:09, Monday 10 September 2012 - last comment - 11:20, Tuesday 11 September 2012(4143)
H1 MC1 Transfer Functions - Starting now

While I am at LLO, I am running the Phase 2a chamberside testing of MC1.  I have read the log and see no reasons why I should not actualte on MC1 chamberside.  I am aware that people are on the floor and even possibly working on the same table.  I'll look at the DQ as I go.  Please email me (or call my cell) if you need to.

Comments related to this report
betsy.weaver@LIGO.ORG - 06:35, Tuesday 11 September 2012 (4150)

Discovered that the IOP watchdog kept tripping since it was not bypassed.  Dave will boot h1sus2a front end this morning in order to implement the bypass.

betsy.weaver@LIGO.ORG - 11:20, Tuesday 11 September 2012 (4152)

Now that Dave reportedly bypassed the IOP, I am restarting TFs.

H1 INS
jodi.fauver@LIGO.ORG - posted 09:11, Monday 10 September 2012 (4141)
BSC9 ICC
The Apollo crew is staging for ICC. Cleanroom sock will be put in place. Christina and Karen got first cleaning in this morning. We will try for second cleaning dome/door removal tomorrow.
H1 FMP
jodi.fauver@LIGO.ORG - posted 09:08, Monday 10 September 2012 (4140)
Cleanroom Choreography
Bubba and crew got the cleanroom over HAM3 on Friday afternoon. Christina and Karen got first cleaning in this morning and did second cleaning after lunch. I'll check particle counts prior to door removal.
H1 IOO
rodica.martin@LIGO.ORG - posted 19:53, Sunday 09 September 2012 (4139)
PSL FI alignment - Mounted CWP1 back in the set-up and re-optimized extinction

This weekend I remounted the first calcite polarizer (CWP1) and re-optimized the extinction ratio of the system at low power. 

The beam was initially not centered on the calcite polarizers (off-centered horizontally by ~3-4 mm on each in opposite directions). I released the posts holding the breadboard and rotated the breadboard CCW to center horizontally on both calcites. This misalignment probably happened when the granite block was moved to make room for the beam profile measurements.

 

I also centered the beam vertically inside the isolator (optics and magnet), but the beam is no longer centered on the two input/output irises, indicating that the breadboard is NOT parallel to the table, but sloped upward. I will check the sloping again on Monday.

 

At 2.2 mW power, the extinction of the first calcite polarizer was 56.43 dB.

 

Extinction measurements after CWP2:

Power s+p (mW)

Power s-pol (uW)

Extinction (dB)

POWER TRAN (W)

 

3.2

0.002

62.04

10.8

 

16.4

0.111

51.70

10.8

 

104

0.686

51.81

10.3

 

103

0.205

57.01

10.3

after finelly adjusting CWP2 pitch / yaw

268

0.530

57.04

10.3

 

505

0.480

60.22

10.3

 

504

0.473

60.28

10.3

after finelly adjusting CWP2 pitch / yaw

 

This should be checked at higher powers also.

H1 SEI
vincent.lhuillier@LIGO.ORG - posted 18:58, Sunday 09 September 2012 (4137)
HAM2 commissioning

I redefined the HAM-ISI Matlab path and modified the tree of the HAM2 folders to use the commissioning scripts. Then, I installed the symmetrization and the damping filters on HAM2. I will keep installing the blend and the isolation filters next week.

H2 SEI
vincent.lhuillier@LIGO.ORG - posted 18:55, Sunday 09 September 2012 - last comment - 11:52, Monday 10 September 2012(4136)
Calibrated spectra of the cavity for different HEPI and ISI configurations

Thursday, few measurements were performed with the cavity locked. This aLOG presents some results.
In order to keep the cavity locked, Isolation filters on the HEPIs were always engaged, HEPI-BSC6 was yawed by ~180micro radian, damping filters on ISIs, TMS, QUADs and the FM were always engaged. The ISC longitudinal error signal was fed back to BSC6-HEPI (UGF ~1mHz). The simplified control schemes of the BSC-ISI and the HEPI are presented in attachment (SEI_Simplified_Control_Scheme.pdf)

The isolation filters of the 2 ISIs are tuned using the following parameters:
- UGF: 15Hz on all DOFs
- Phase margin > 45deg
- Gain margin>20dB
- Gain peaking <2

The HEPIs are tuned using the following parameters:
- Blend IPS-L4C at 800mHz
- UGF: 10Hz
- Phase margin > 45deg
- Gain margin>20dB
- Gain peaking <2

The measurements were performed using DTT, and then the spectra are extracted and calibrated using Matlab. In order to extract the data from DTT and save them in a .mat file, I used the Matlab and the python scripts called respectively ddt2mlab.m and ddt2mlab.py found in userapps/trunk/cds/common/scripts/dtt2mlab. Due to a bug, I modified (a hack, not a fix) ddt2matlab.py and dtt2matlab.m but I didn’t commit the changes.

The Calibrated spectra presented in attachment were measured in the following configurations:
-          HEPI ON - ISC Y - No Sensor Correction - ISI Damping
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping + Isolation with ST1 L4C blended at 250mHz
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping + Isolation with ST1 L4C blended at 250mHz + ST2 GS13 blended at 100mHz
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping + Isolation with ST1 L4C blended at 100mHz + ST2 GS13 blended at 100mHz
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping + Isolation with ST1 T240 blended at 250mHz + ST2 GS13 blended at 250mHz
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping + Isolation with ST1 T240 blended at 100mHz + ST2 GS13 blended at 250mHz

The plots show spectra of the length of the cavity (LHO_OAT_ALS-Y_ARM_LONG_IN1_DQ_2012_09_06.pdf), the motion of stage 1 (LHO_OAT_ISI-ETMY_ST1_BLND_Y_T240_CUR_IN1_DQ_2012_09_06.pdf) and stage 2 (LHO_OAT_ISI-ETMY_ST2_BLND_Y_GS13_CUR_IN1_DQ_2012_09_06.pdf) of ISI-BSC6 (ETMY). The mystery noise (fiber?) mentioned in 4128 slightly disturbed the measurements; it is visible on some spectra (on the black curve of LHO_OAT_ALS-Y_ARM_LONG_IN1_DQ_2012_09_06.pdf around 2 Hz for instance).

On the spectra of the cavity, the effect of the sensor correction on the HEPIs is noticeable (blue vs green). In both cases, the ISIs are only damped. However, there is a significant amplification below 100mHz (corner frequency of the STS-2 (on the ground) high pass filters at 40mHz). Above 100mHz, there is a reduction by a factor of 3-4 visible up to 2-3Hz.
Once the isolation filters are engaged on stage 1 only (blend at 250mHz on the L4C – in red), the attenuation is important above 250mHz and the amplification is still visible below 100mHz (should be amplified by the stage 1 CPS low blend filters).
Next, stage 2 isolation filters were also engaged and blend frequencies were lowered down to 100mHz and finally the T240s were introduced in the stage 1 super sensor (CPS + T240 + L4C). The extra isolation (low blend + T240s + 2 stages controlled) provided by the ISIs is not visible on the cavity above 200mHz (reaching the noise floor of “something”). Only the amplification below 100mHz is visible due to the use of aggressive blend filters (100mHz) and the 2 stages of isolation. The largest amplification is obtained when the 2 stages are controlled and the position sensors are blended with the seismometers at 100mHz.

The isolation provided by the ISIs is presented in figures (stage 1 - LHO_OAT_ISI-ETMY_ST1_BLND_Y_T240_CUR_IN1_DQ_2012_09_06.pdf) and (stage 2 - LHO_OAT_ISI-ETMY_ST2_BLND_Y_GS13_CUR_IN1_DQ_2012_09_06.pdf). The best isolation is obtained when the T240s are introduced in the stage 1 super sensor with a blend frequency of 100mHz. Actually, the CPSs are blended with the T240s at 100mHz and the T240s with L4Cs at 2Hz (cf scheme control).

Comments on the amplification at low frequency (peak at 60mHz)?
 At 60 mHz, when the ISIs are not controlled, the ISIs absolute motions are about 1 micrometer and the relative motion between the 2 ISIs is 100nm. A transfer function from the STS-2 at the end station to the STS-2 at the corner station showed that the LVEA and the end station are moving in phase around 100mHz (a 5-6 degrees phase would explain the 100nm of relative motion between the ISIs).
Once controlled, the absolute motion of the ISIs is amplified by 10 but what is the phase between the 2 ISIs? I tried to measure transfer functions from the T240s in BSC6 to the T240s in BSC8 but the coherence is close to zero.
Under control, the relative motion between the 2 ISIs is 10^4nm (x100 amplification). A phase of 60 degrees between the ISIs would explain that. But, it would be surprising to see this large phase since the filters used on both ISIs are quasi identical.

At low frequency, the platforms are locked to the ground using the position sensors. But if the so called vertical position sensors are not all “perfectly” aligned with the vertical, a translation of the platform in the horizontal plan will create some tilt. Under control, if the ISIs are moving in phase in the Y direction but one ISI is tilting in +Rx while the other one is tilting –Rx, the variation of the length between the test masses hanging points will be increased.

The tilt correction has not been implemented on the ISIs. Few weeks ago, I quickly tried but I didn’t see any significant improvements. It may be worth trying again.

Non-image files attached to this report
Comments related to this report
vincent.lhuillier@LIGO.ORG - 10:29, Monday 10 September 2012 (4142)

The measurements are done using a 20mHz resolution and 10 averages (500s measurements). The measurements starting times are reported below:
-          HEPI ON - ISC Y - No Sensor Correction - ISI Damping - 1030986848
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping - 1030987450
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping + Isolation with ST1 L4C blended at 250mHz - 1030989568
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping + Isolation with ST1 L4C blended at 250mHz + ST2 GS13 blended at 100mHz - 1030992897
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping + Isolation with ST1 L4C blended at 100mHz + ST2 GS13 blended at 100mHz - 1030994063
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping + Isolation with ST1 T240 blended at 250mHz + ST2 GS13 blended at 250mHz - 1030997720
-          HEPI ON - ISC Y - Sensor Correction - ISI Damping + Isolation with ST1 T240 blended at 100mHz + ST2 GS13 blended at 250mHz - 1031000346

jeffrey.kissel@LIGO.ORG - 11:52, Monday 10 September 2012 (4144)
Here're some P and Y optical lever spectra and RMS of the H2 SUS ETMY during a select few times of Vincent's mentioned above,

Magenta and Cyan == 1030986848, Damping Loops Only
Yellow and Green == 1030997720, ST1 T240s at 250 mHz
Red and Blue     == 1031000346, ST1 T240s at 100 mHz


I'll see if I can get these up against a model later today.

Note, I explicitly *don't* show ITM data, because it shows very-little change between the different configurations. After a call to Vincent, he says that there was work in the LVEA during some of these measurement times, so ITM data should be suspect, and by the looks of the ITM spectra, I agree with him.


[[EDIT at 5:12pm ET]] I fixed the legend such that it actually matches what I describe above, and the data. Sorry about that.
Non-image files attached to this comment
LHO General
suresh.doravari@LIGO.ORG - posted 14:15, Sunday 09 September 2012 - last comment - 19:07, Sunday 09 September 2012(4135)
Dust alarm at EY
[Rodica, Suresh]  Sun Sep  9 14:14:59 PDT 2012    

We found a dust alarm arising from H0:PEM-EY_DST1_3   .  Don't know if this a serious concern or if it is a false alarm.   Thought it is best to log it for site managers to look at.
Comments related to this report
suresh.doravari@LIGO.ORG - 19:07, Sunday 09 September 2012 (4138)
From Dale Ingram -- I was in the control room from ~17:00 to 19:00 doing an outreach video conference and silenced 4 more dust alarms at EY (1 and 2).  The sky is extraordinarily dusty tonight because of high winds - not sure if this is the issue.
H1 IOO
rodica.martin@LIGO.ORG - posted 08:56, Saturday 08 September 2012 (4134)
FI crystals restored and reassembled
Joe D, Cheryl, Rodica

With the most invaluable help from Joe D we got the TGG crystals completely restored to their shine yesterday. With the crystals in their holders we flushed freon inside the tubes and perfectly removed all contamination.

Cheryl and I reassembled the Quartz crystal with new strips of indium foil and closed the second assembly for the single TGG crystal and brought everything back inside the PSL enclosure.

We also cleaned the inside of the dust shield of the magnet with vectra alpha wipes and IPA.
H2 ISC
keita.kawabe@LIGO.ORG - posted 17:53, Friday 07 September 2012 (4133)
fiber swapped but no PLL today.

Fiber was swapped from optics lab refcav to the PSL.

At the fiber patch panel in the MSR, the power we're getting from the optics lab refcav was about 3.3mW while our new PSL fiber provides 1.1mW or so.

Everybody had something else to do, so nobody was able to take care of the PLL. We'll continue working on it on Monday.

LHO General
michael.rodruck@LIGO.ORG - posted 16:42, Friday 07 September 2012 (4132)
Ops summary
H1 SEI
hugh.radkins@LIGO.ORG - posted 16:24, Friday 07 September 2012 (4131)
WHAM1 Support Table Coarse Alignment Complete
Jim, Greg, Mitchell, & Jason (IAS)

We got the Risers & Support Table into the Chamber Tuesday (Corey).  Wednesday we stayed pretty quiet.  Thursday we torqued the Support Table to Support Tube bolts and then surveyed the Support Table for vertical.  It was level to +-0.1mm but low 0.8mm.  Today we pulled the East door and IAS gave us horizontal moves.  This afternoon we moved the dial indicators from HAM2 to HAM1, floated the system and moved the position and adjusted the elevation (based on the DIs).)  We have a little more adjustment in horizontal now but ran out of time so we locked up the HEPI stops after adjusting the F-Clamp position where needed.
Next week we'll do a couple more tweaks and be ready for IAS to do another check.  We'll then lock up HEPI again and attempt a stress relieve on the Springs.
Finally we'll get back to building the isolation stacks and installing the Optical Table.
H2 CDS
jeffrey.garcia@LIGO.ORG - posted 14:54, Friday 07 September 2012 (4129)
new RCG bug submitted to bugzilla
A newly-found RCG bug has been submitted as Bugzilla bug #415 to document recent findings in SUS that indicate three different file-name structures are created by the latest RCG code (2.5.1) to generate the generic MEDM screens. In the local directory, '/opt/rtcds/lho/h2/medm/', the RCG-generated MEDMs are written and sorted based on the individual model's name.

As an example, the directory for the H2 SUS ITMY ('/opt/rtcds/lho/h2/medm/h2susitmy/') generic MEDMs contains file-names of generally two structures:
1.) H2SUS_ITMY_* 
and 
2.) H2SUSITMY_ITMY_* 

A third structure was recently discovered:
3.) H2SUSITMY_*
(Note the difference between (2.) and (3.) is the second "*ITMY*" is missing.) 

This third structure seems to only apply to the ADC, DAC, GDS, BIO, and ALARM MEDMs.

H2 SUS
keita.kawabe@LIGO.ORG - posted 12:34, Thursday 06 September 2012 - last comment - 13:08, Monday 24 September 2012(4112)
ETM and ITM upper stage SUS BOSEM and Oplev sign question

From initial alignment data, we know the following:

Positive offset in PIT (H2:SUS-ETMY_M0_OFFSET_P and H2:SUS-ITMY_M0_OFFSET_P) will tilt the mirros such that the reflected beam off of the mirrors will go down.

Positive offset in YAW will tilt the mirrors such that the reflected beam off of the mirrors will go toward the inside of L.

That is, the upper stage of ITM looks like the mirror image of the ETM. Why is this the case? I thought that they are identical.

Also, I think oplev sign is somehow wrong. It's not consistent with initial alignment data.

 

FYI, the sign of the things in initial alignment was figured out by:

First using baffle diodes to figure out the sign of the TMS to figure out the TMS sign, and make the first beam hit the center of the ITM.

Then using ETMY cage and CCD camera, make the reflected beam from the ITM hit the cage bars to figure out the sign of ITM.

Then move offset of ETMY so that the beam comes back to the table, then move TMS and repeat, to see if ETMY sign is the same as TMS (it is).

As you can see, there is not much ambiguity there.

Comments related to this report
keita.kawabe@LIGO.ORG - 12:59, Thursday 06 September 2012 (4113)

Attached is the oplev and upper stage offset. (Jumps not caused by the offset are from HEPI.)

For positive SUS offset, the following is true for Oplev:

  Positive PIT offset Positive YAW offset
ETMY Oplev goes negative Oplev goes positive
ITMY Oplev goes positive Oplev goes positive

From this, oplev seems to think that positive PIT offset moves ETMY down but ITMY up, and positive YAW offset rotates both ETM and ITM in the same direction.

Images attached to this comment
mark.barton@LIGO.ORG - 16:51, Friday 07 September 2012 (4130)
Mark Barton

I did some followup on this issue and it looks as if the F2 and F3 OSEMs may be swapped on ITMy. See attached plots which have Keita's channels (divided up into separate plots for ETMy and ITMy), plus additional ones of interest, including the M0F1, M0F2, M0F3, L1UL and L1LR sensors, the estimated P and Y from the OSEM2EUL blocks at M0 and L1, and the requested drives to the M0F1, M0F2 and M0F3 coils before magnet sign correction. I also zoomed in on a 3 hour period from 12-09-06-02-00 to better show the events of interest.

With ETMy, everything is as expected. The pitch OL reads negative for positive pitch offset but this is as designed - the OL is trying to be a measure of beam height and positive SUS pitch is down. (Yaw is left=positive viewing the QPD from the optic, which is the same convention as for SUS.)

With ITMy, everything internal to SUS to do with pitch is as expected, but the OL does not have the expected opposite sign. In yaw, the M0 and L1 Y channels have opposite sign and the yaw OL agrees with M0 yaw.

This would be consistent with the F2 and F3 OSEMs on the ITMy being swapped. A further data point in favour of this is that the signs in the ITMy COILOUTF block are the opposite of expected from E1000617 (F2 should be opposite F1 and F3, and is for ETMy, but it's F3 that's opposite for ITMy). This was earlier put down to a magnet swap, but the comparison with the L1 level suggests it's actually the OSEMs that are swapped. This wouldn't be a hard mistake to make because the convention in E1000617 is a bit confusing: both M0 and R0 face OSEMs are labelled

   F1
F2   F3

as viewed from the _back_ (i.e. the reaction chain side), so the M0 OSEMs are

   F1
F3   F2

from the side you would work on them from.

As far as OL's are concerned, things are consistent with both ITMy OL channels being flipped, as if the QPD were upside down.
Images attached to this comment
thomas.vo@LIGO.ORG - 13:08, Monday 24 September 2012 (4279)
Mark B. Thomas V.

We buzzed out the the QPD with a laser pointer on ITMy and found that the QPD is upside down from what the MEDM screen on the SUS quadrants are indicating.

The segments of the QPD are laid out as such:
   +-------+
   | 2 | 4 |  ^
   |---+---|  | This way up
   | 3 | 1 |  |
   +---+---+

I believe the error came from a miscommunication in the exchange of information between SUS and OptLevs.  I had originally mapped out the quadrants on 07/24/2012 according to ALOG 3573 using the MEDM screens.   I wasn't aware that the top level ITMY SUS QUAD model had been re-ordering the signals as such (as described in Jeff K's ALOG 3613): 

Analog Signal    ADC Channel      SEG#
1                1_0              SEG2
2                1_1              SEG1
3                1_2              SEG4
4                1_3              SEG3

According to ALOG 3613, Jeff had re-ordered ADC Channel and SEG# to 1:1 as it makes the most sense to be that way! I think this sequence of events led to us being confused on why the signals look like they're upside down since the diagonals of the signals are switched.  This fix explains why Keita's original entry shows that the OptLevs look "backwards" in some sense.  

For future reference, I'll try to be more clear on what I'm measuring when mapping out the orientation of the optical lever QPD, as well as run tests with the suspension offsets in pitch and yaw to make sure they coincide with each other. This will be added to the Optical Lever Installation Procedure (E1200063).
Displaying reports 72961-72980 of 76990.Go to page Start 3645 3646 3647 3648 3649 3650 3651 3652 3653 End