Displaying reports 73161-73180 of 76987.Go to page Start 3655 3656 3657 3658 3659 3660 3661 3662 3663 End
Reports until 14:04, Wednesday 22 August 2012
Logbook Admin Feature Requests
jeffrey.garcia@LIGO.ORG - posted 14:04, Wednesday 22 August 2012 - last comment - 14:25, Wednesday 22 August 2012(3935)
Requests
Ability to log out a user out and not have the previous users info saved, so I can log him out and log myself in without clearing cookies. This is not Jeff Garcia.

Also, I'd like to be able to add captions to attached files.
Comments related to this report
jonathan.hanks@LIGO.ORG - 14:25, Wednesday 22 August 2012 (3937)
The logout issue is a known limitation with the LIGO.ORG authentication on shared workstations.  You need to completely close/kill the browser, or open a different browser (not just a different browser window).

The authentication is not handled by the application, it is handled by the LSC auth project login server (login.ligo.org).  Clicking aLOG log-out button does in fact clear all state in the application associated with your session.  The issue is that the aLOG does not have a way to affect the state of login.ligo.org.

So this is a known issue, it will be fixed at some point.  The benefit in account and password management of using the LIGO.ORG credentials appears (by far) to outweigh the inconvenience of having to kill the browser when you work at a shared workstation.
jeffrey.kissel@LIGO.ORG - 14:25, Wednesday 22 August 2012 (3938)
The first of your requests has been a request since last summer, see LHO aLOG 1000. I know Jonathan Hanks is working on this.
H2 CDS
david.barker@LIGO.ORG - posted 13:28, Wednesday 22 August 2012 - last comment - 15:04, Wednesday 22 August 2012(3934)
EY front ends restarted, new h2tcsetmy model installed

We had a timing glitch at EY which required a restart of all EY front ends. I took the opportunity to install the new h2tcsetmy model for the ring heater.

I did a manual burt restore of the safe.snap files and found problems with

I'll fix the ones marked *

Comments related to this report
bram.slagmolen@LIGO.ORG - 15:04, Wednesday 22 August 2012 (3941)

I restored ISCEY, ETMY and TMSY to 3am, 22 August 2012.

H2 SEI
vincent.lhuillier@LIGO.ORG - posted 11:43, Wednesday 22 August 2012 (3933)
CPS-L4C-T240 in the 250mHz stage 1 blend

I have attached 2 plots:

LHO_ISI_ITMY_Calibration_Check_Stage_1_Sensors_201208022.fig shows the calibrated transfer function from the Y drive to CPS, L4C and T240 on ITMY. Calibration is OK. LHO_ISI_ITMY_Calibration_Check_Super_Sensor_201208022.fig shows the contribution of each sensor in the stage 1 250mHz blend in the Y direction. The calibrated TFs are slightly different in the 2 figures due to the introduction of the calibration correction gain to improve the blend  (amplitude - phase).

H2 AOS
jeffrey.kissel@LIGO.ORG - posted 09:29, Wednesday 22 August 2012 (3932)
Re-restore ITMY Optical Lever Calibration
After Robert's presentation on magnetic coupling today at the Systems meeting, I wanted to double check that the calibration in place were the final numbers that Thomas and I had calculated, having remembered that the incorrect numbers were stored in the safe.snap, and were restored incorrectly a few weeks ago.

When there is down time in the cavity commissioning: please turn off the suspension and grab a new safe.snap.


ETMY's numbers are confirmed to be correct.
H1 AOS
jason.oberling@LIGO.ORG - posted 08:52, Wednesday 22 August 2012 (3930)
HAM2/3 ISI Position
IAS: J. Oberling, D. Cook
SEI: J. Warner, G. Grabeel
 
Yesterday we measured the position and rotation of the HAM 2 and 3 ISIs.  The HAM 2 ISI was adjusted by Jim and Greg.  Note: the y-axis position measurements are performed with the total station Electronic Distance Meausurement (EDM) feature, which is only accurate to ±2 mm. 
 
The current position errors of both ISIs are as follows:
 
HAM 2 ISI

HAM 3 ISI

H2 ISC
bram.slagmolen@LIGO.ORG - posted 00:05, Wednesday 22 August 2012 (3929)
OAT Locking with Trilliums in ISI's

Ok, I could not help myself. It all looked fine, so I engaged the Trilliums on the ISI's. Attached are the blend screens, showing what trillium blends are engaged (due to the great work by Vincent on organising the scripting behind the buttons!).

The RefCav still drops and relocks (as for the arm), but I am sure we can make a spectrum in between the drop spikes. It is runnig as of the time of this entry.

Advised not to enter the LVEA otherwise the Trillium will trip, and not sure if the ISI will trip as a whole or drops to damping only.

Images attached to this report
H2 AOS
bram.slagmolen@LIGO.ORG - posted 23:47, Tuesday 21 August 2012 - last comment - 09:23, Wednesday 22 August 2012(3927)
OAT Locking ...

Earlier this evening I kept the arm locked, but we unsuccess full in generating a proper spectrum. This was because the RefCav kept dropping lock every ~10 min or so, see the first attachement of the StripTool.

I did manage to get a spectrum (only 8 ave in a <10 min stretch), and it is nice to see the noise above 1 Hz dropping due to the work on the RefCav. In the other hand we have not made anyhead way at the lower frequencies.

To that end I tried to engage the Trilliums on the ISI's, which I did but then got trumped by the 10 min lock treches. I was worried to keep the ISI running with the Trilliums overnight, so I reverted back to running with the L4C's overnight.

When writing this entry, the cavity is still locked, but has the ~10 min lock loss after which itself brings into lock. This is sort of an hiddious autolocker:)

Images attached to this report
Comments related to this report
bram.slagmolen@LIGO.ORG - 09:23, Wednesday 22 August 2012 (3931)

Oeps, just noticed the units in the spectrum are missing. They are [nm/rtHz].

H2 ISC
bram.slagmolen@LIGO.ORG - posted 23:39, Tuesday 21 August 2012 (3916)
RefCav Servo Modifications

[Daniel, Alberto,Bram] 17 August 2012

We found a 221 kHz resonance in the laser PZT. We modified the PZT notch filter in the TTSFF, by changing C47 from 910 pf to a 1000 pf and a 68 pf parallel to each other. With the variable capacitor C46 we managed to set the notch frequency to 219 kHz. Although we should see a -23dB depth, we only measured -10dB. In the end this seemed to be ok.

LHO General
patrick.thomas@LIGO.ORG - posted 19:29, Tuesday 21 August 2012 (3928)
plots of dust counts
Attached are plots of dust counts > .5 microns in particles per cubic foot.
Non-image files attached to this report
H2 ISC
keita.kawabe@LIGO.ORG - posted 18:32, Tuesday 21 August 2012 (3926)
Diagnosing FSS trouble

I spent several hours in the optics lab to diagnose the FSS trouble that we've been experiencing lately. I've found two failure modes though there may be more. One was fixed and the other was not.

1) EO monitor slowly creeps up due to 14.4 kHz oscillation building up.

Fixed by rebalancing the PZT-EOM crossover. (Fast gain was 592 or something like that in the morning, now it is 815).

In this mode, FSS still appears to be locked and the REFCAV transmission looks OK, but if you lock the arm your arm transmission slowly degrades, and after a while it becomes impossible to lock the arm.

When you look at the EO RMS monitor and the PZT fast monitor on the oscilloscope, EO monitor creeps up very slowly though you wouldn't notice anything in the PZT, so you would think that this is some really high frequency stuff. 

However, it turns out that this is almost entirely due to 14.4kHz oscillation slowly building up. PZT signal has lower frequency crap so 14.4kHz is not that apparent on the oscillo.

Attached shows the spectrum of the common path test point in the FSS box in bad and normal state.

 

2) Fast glitch in PZT.

Not fixed.

This is distinctively different from the first one in that there is a big fast glitch observed in the PZT signal first. ("Fast" just means that it looks instantaneous on the oscilloscope that is set to its slowest setting, so it could be 100Hz or 100kHz.) 

Sometimes the PZT can take it and the signal goes back to normal after a while. Sometimes the PZT cannot, and the refcav loses lock. It looks like the refcav can relock itself in this mode even if the lock is lost.

EOM monitor doesn't show anything until refcav loses lock.

Even though the glitch itself seems to be fast, what seems like a transient response of the servo is very slow (slower than 1Hz).

I wanted to see the glitch on the analyzer in real time, but somehow it happens only when I'm not looking at the screen.  We need a good young scientist who can sit in front of the analyzer without blinking for an hour.

Images attached to this report
H1 CDS
david.barker@LIGO.ORG - posted 17:50, Tuesday 21 August 2012 (3925)
CDS Maintenance Summary for H1 work

All awtpman processes were restarted with the latest code.

New sus models were installed for MC1, MC3, PRM and PR3 on h1sush2a.

The crash of h1susim model was tracked to a missing ipcRfm=1 flag on h1iopsush2b. In the process we imported local modified files from LLO for:

and I imported l1susim.mdl to make the h1susim.mdl but reverted the ADC channel changes made on the l1 model.

I changed H1's SITEMAP.adl to add a second SUS pull down for the IM medm screens (copied the links from LLO).

For anyone new to the IM optics naming, here is a conversion table from old to new names

SM1 IM1
PMMT1 IM2
PMMT2 IM3
SM2 IM4

ISI models for HAM2 and HAM3 were changed to read out IPC error rates into EPICS channels. We are seeing errors on watchdog IPC channels but not on OPLEV QUAD channels which is confusing. This investigation will continue tomorrow.

H2 CDS
david.barker@LIGO.ORG - posted 17:43, Tuesday 21 August 2012 (3924)
CDS Summary for H2

Following the thunderstorm, all LVEA front ends had timing errors and h2pemeyaux was frozen. I rebuillt all the cornerstation models against RCG2.5.1 and tested that the IOP watchdog still worked between h2susb478 (ITMY), h2susb78 (FMY) and h2seib8. Then Vincent made his model changes which convert EPICS comms to Dolphin IPC and verfied that RCG2.5.1 has fixed the Dolphin error he saw last week with RCG2.5.

h2pemeyaux required a power cycle to bring it back.

All H2 awgtpman processes were upgraded to the latest version.

The new ring heater code on h2tcsetmy upgrade was deferred until tomorrow to not impact on OAT work.

H1 INS
calum.torrie@LIGO.ORG - posted 17:19, Tuesday 21 August 2012 (3922)
WHAM3 MC2 BandK in chamber

WHAM3 MC2 BandK in chamber LIGO-T1200403-v1

https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=95644

Draft
H2 TCS
jaclyn.sanders@LIGO.ORG - posted 16:57, Tuesday 21 August 2012 - last comment - 17:42, Tuesday 21 August 2012(3921)
Modal spacing with ring heater (Jax, Elli, Alberto)

This afternoon we ran the ring heater on ETMY for ~3.5 h, taking cavity scans to attempt to quantify the change in modal spacing with heating.

There's a clear change in the behavior in the 55-60 kHz region (associated with the modulation sidebands), but getting a clear signal for a higher-order cavity mode has been difficult. I also don't understand the downward slope of the phase response curve. I'm hoping to make better measurements tomorrow with a cold cavity to get consistent, clear numbers for the cavity mode frequencies, then try this measurement again.

The adoption of Phase - Phase at 30 kHz for the y-axis is purely to put the traces closer together visually for side-by-side comparisons of the sidebands. The "hot" trace starts at 166.7417, the "cold" trace starts at -162.2308.

Images attached to this report
Comments related to this report
aidan.brooks@LIGO.ORG - 17:42, Tuesday 21 August 2012 (3923)

I compared one of this afternoon's heated cavity scans with a cold cavity scan from last week. The nominal frequency of the TEM10 mode is shown (around 66kHz) [higher order frequency spacing = 28.5kHz, FSR = 37.5kHz, sum = 66kHz). There's clearly a shift in the TEM10 mode of a few hundred Hz.

Non-image files attached to this comment
LHO General
jeffrey.garcia@LIGO.ORG - posted 16:10, Tuesday 21 August 2012 (3920)
OPS Log
Kingsoft water delivery
Praxair delivery at ~10:40
Contractors on-site

Jim B. to End-Y station to reboot PEM I/O chassis
Michael R. to outbuildings to change signs for laser safety
work just north of HAM4 by Eric A.
Douglass using leak detector in OSB Optics Lab
SUS work in and around HAM3
H1 SEI
hugo.paris@LIGO.ORG - posted 15:22, Tuesday 21 August 2012 (3919)
HAM2 & HAM3 - Simulink Models Modified

DaveB, JeffG, HugoP,

Added EPICS output channels to monitor errors on IPC receiver inputs (all from SUS) of HAM2 and HAM3 models.

H1 SUS
betsy.weaver@LIGO.ORG - posted 15:05, Tuesday 21 August 2012 (3918)
HAM2 MC2 initial TFs to check for rubbing and other install work

We're going to take a few quick TFs of MC2 to check for mechanical interferences within the suspension since it has been installed.  Next up, we'll set the B&K Hammer/Laser Vibrometer equipment up on MC2 for measurements.

We have also been cleaning up grounding and cabling issues inside the chamber.  This is still ongoing and will migrate to PR2 shortly.

H1 PEM
maggie.tse@LIGO.ORG - posted 14:32, Tuesday 21 August 2012 (3917)
Effectiveness of accelerometer mounting schemes

 

During iLIGO, there were 3-axis accelerometers that were mounted on the tabletops of optics tables. This was done by bolting three accelerometers to the sides of a aluminum cube that was then bolted down to a aluminum plate, which was bolted to the table. This mounting scheme, however, introduced a ~900Hz signal, associated with the resonance of the cube and the plate, into the accelerometer channels. We investigated new mounting schemes to use during aLIGO, and compared them.

 

For all the tests, we used as our reference an accelerometer that was attached to the table surface with a thin layer epoxy. The hole at the bottom of the accelerometer normally used for bolting it to cubes was sealed with a set screw to avoid having epoxy seep between the threads. The epoxy was Devcon 5-minute epoxy, which was applied to the bottom of the accelerometer. Excess epoxy was scraped off using the flat side of the mixing stick, to have the layer be as thin as we could make it. The accelerometer was then placed on the table, in an area where it was not over any of the holes for bolts, and the epoxy was allowed to cure for 5 minutes before the cable was attached to it. The thickness of such a layer of epoxy is no more than 0.3mm.

---------------------

SUCCESSFUL MOUNTINGS:

 

Items Used:

- Wilcoxon accelerometer, model 731-207

- Devcon 5-minute epoxy

- Wilcoxon 1in. triaxial aluminum mounting cube, model TC1

- Glad polyethylene wrap

- Ultratape 1520CL100P3D

- 520 ft Thermax RGS-316 cable

 

Z-axis mounting:

We tried adding a layer of Glad polyethylene wrap between the accelerometer and the table. A thin layer of epoxy was first applied to the accelerometer, and a piece of wrap was pulled taut against the bottom of the accelerometer. Then another thin layer of epoxy was applied to the wrap, and then the accelerometer was pressed to the table. The purpose of adding the layer of polyethylene wrap is to isolate the accelerometer from the object it's mounted to, since a thin layer of epoxy may actually allow parts of the metal exterior of the accelerometer to come into contact with the table. The combination of the epoxy and polyethylene wrap added 0.3mm to the heght of the accelerometer (the wrap itself is ~0.5 mils thick). We found that adding this layer does not make the signal deviate too much from that of the reference (see attachment 1).

 

Triple-axis mounting:

We tried attaching an accelerometer with a layer of polyethylene wrap on the bottom (as above) to an aluminum cube using epoxy, and attaching that cube to the table using epoxy. This also does not make the accelerometer signal deviate significantly from that of the reference (see attachment 2). For actual installation of triple-axis accelerometers, we recommend first attaching three accelerometers to a metal cube using the epoxy-polyethylene-epoxy method described above, outside the LVEA. Once the epoxy has cured and the triple-axis setup is stable, one only needs to use one batch of epoxy near the table to mount the cube. We tested a similar setup but with a (non-conductive) acrylic cube instead, but found that the aluminum cubes give better performance (see attachment 3).

 

Temporary mounting:

For temporary installations, we tested 1in wide double-sided clear clean room tape. Previously, in iLIGO, double-sided Scotch tape was used, but for aLIGO we wish to use particle-free adhesives such as clean room tape. We found that this mounting allowed the accelerometer to respond to vibrations in a similar way to the epoxied reference (see attachment 4). There were two kinds of clean room tape we tried, one that had a peel-away backing, and one that did not. Since the backing is a hassle to peel off, the tape without the backing is preferred.

 

Extra long cables:

For cases where extra long cables need to be used for an accelerometer, we verified that the length of the cable does not affect the accelerometer readings. We tested a 520 ft Thermax RGS-316 cable with an accelerometer that was epoxied to the table, next to the reference, and found no effects from using a longer cable (see attachment 5).

---------------------

SUB-OPTIMAL MOUNTINGS:

 

The first mounting scheme we tested was double-sided tape, used in temporary setups during iLIGO. This kind of mounting is useful in temporary installations, not specific to optics tables. The tape used was Scotch Permanent Double Sided Tape, 0.5in wide. Two parallel, non-overlapping strips were placed across the bottom of the accelerometer, which is 1in in diameter, and the accelerometer was pressed to the table surface, again away from any holes. It was placed adjacent to the reference to avoid variations due to positioning on the table. The tape was also found to be non-conductive, so it isolates the accelerometer from the object it's mounted to. We found that when taped to the table, the accelerometer behaves very similarly to one that is epoxied to the table (see attachment 6). However due to cleanliness concerns we opted to use clean room tape for future installations.

 

Next we compared the iLIGO setup to the epoxied reference. We again found the 900Hz resonance of the cube and plate entering the accelerometer channel (see attachment 6).

 

 


Other methods we tried were:

 

Maggie Tse, Robert Schofield

Images attached to this report
Displaying reports 73161-73180 of 76987.Go to page Start 3655 3656 3657 3658 3659 3660 3661 3662 3663 End