Sheila, Kiwamu, Stefan
For the green team: The green beam needs to be realigned on ISCT1 because we had to move PR3.
We noticed that the maximum green arm transmitted light had dropped significantly (from 830 cts to about 500 cts) over the past day.
Also when we locked the PRMI on sidebands, we noticed that the POP18 buildup had dropped from 24000cts tp 4000cts. Looking at the in-vac POP QPDs we found that the actual build-up didn't drop significantly. Thus we suspected clipping, and indeed the green beam was on the edge of the first iris on the table. We moved PR3 to (P:-237.328, Y:-257.276) to center the beam on the iris. Indeed, when we locked up PRMI again we were back at 24000cts.
The old slider values were (P:-240.328, Y:-252.276), so we moved 3urad in pit, and 5urad in yaw.
[Yuta, Evan]
We have implemented a servo that uses the tip-tilts RM1 and RM2 to keep the REFL beam on the in-vacuum WFS.
By driving RM1 and RM2 in pitch with a sine (20 cts amplitude, ~2 Hz frequency) and monitoring the pitch signals from REFL_A_DC and REFL_B_DC, we were able to extract the following coupling matrix which takes RM1/RM2 pitch to REFL_A_DC/REFL_B_DC pitch:
0.097 | -0.0068 |
0.024 | 0.0079 |
From this we computed the following normalized inverse matrix:
1 | 0.86 |
-0.24 | 1 |
We entered this matrix into ASC_INMATRIX_P_FULL as taking REFL_A_DC and REFL_B_DC to DC1 and DC2. We repeated the sine wave injections and found that the responses of DC1_P and DC2_P were largely orthogonal, indicating that this matrix gives good diagonalization.
We repeated the above for the yaw signals. The measured matrix is
0.055 | -0.0085 |
0.019 | 0.0092 |
and from this the appropriate normalized inverse is
1 | 0.92 |
-0.34 | 1 |
We again verified that this gave good orthogonalization of DC1_Y and DC2_Y.
We then used the DC centering filter banks to make a loop. We use a pure integrator, constructed from a pole-zero stage at 0 and 0.05 Hz respectively, and a pole at 0.05 Hz. For DC1_P, we use a gain of 200; for DC1_Y, we use a gain of -200; and for DC2_P and DC2_Y, we use a gain of 4000. We measured the OLTFs of these loops and found that they had a UGF of 0.4 Hz, with at least 30 degrees of phase margin.
TMS Alignment Work
Our first alignment check by Doug showed that we were low ~1cm & to the right ~1cm (when looking from the front). Since vertical adjustment is fairly easy, we went about correcting some of this vertical by re-hanging the TMS.
The wires coming down from the Upper Structure have three vertical position holes to connect to; they are 6mm apart from each other vertically. When we hung the Lower Structure last week, we could not recall which set of holes we used when we were in BSC6 so we screwed our clamps into the "middle" set of holes. So, with us being low by 1cm we needed to attach the wires to the lowest set of holes and get everything to move up 6mm. This requires using the Genie lift to come in and take the load of the TMS Lower Structure so we can disconnect the wires & re-connect to lower holes to raise the entire assembly. This vertical move did the trick and we were right on the scribe = VERTICAL is GOOD.
Took another look at horizontal after the vertical change and for horizontal, we need to move the entire assembly 6.5mm to the "left". Since this is a major endeavor, we're going to tackle this tomrrow with Doug. We'll need to get Pushers & teflon-tipped dog clamps on deck.
Mirror Mount Dump Clips Installed
After a second iteration of modifying in the machine shop, these clips were finally able to slip on to the mirror mounts (these are so much more easier to install before optics are installed!). We now have (8) of these Dump Clips installed on mirror mounts.
BOSEMs working & TMS Damped
We were not able to look at our TMS SUS signals last week. Turns out the cable was not connected at the sattelite box/rack. Once we were connected, we adjusted BOSEM positions to get their outputs zeroed. Once the BOSEMs were positioned, the TMS was also damped (but the IOP Watchdog tripped quite a bit).
TMS EY Photos
Photos of our work will be posted here.
Brett S Arnaud P
This afternoon we measured the resonnance frequencies of the ETMY in two locking configurations in order for Brett to improve the parameters of the quad model. We used PUM/UIM osem signals as well as the "temporary" optical lever to measure them. We plugged the pd electronics to the three first channels of h1pemey ADC0 in order to read the op lev signal from dtt.
For the first measurement, the top mass was locked and PUM, UIM, test mass were free. At first we didn't have a really clear signal from the PD in Pitch and Yaw, and since the PUM flags seemed to be really low and touching the osems Brett had to adjust the earthquake stops of the reaction chain in order to get the lower masses freely suspended. After the few adjustements, measurement showed all the needed frequencies in the osems as well as in the op lev.
For the second measurement, the top mass and UIM were locked. This time, the reflected beam was moving too much due to excess pitch/yaw motion, and after waiting a long time for the suspension to settle down, we changed the plan, and pointed the beam to the right edge of the test mass (bottom edge of the ear) to measure only the bounce modes. The dtt spectra of the op lev sum looked somehow funny. Fortunately the PUM osem signals were sufficient and showed all the frequencies, even the ones of the bounce modes.
Brett will post the results when they will be processed
At first glance the mode frequencies look pretty good. The pitch modes of the double pendulum hang (UIM locked) were a few percent off and the bounce modes of the same case were few percent high. The bounce modes were similarly high in the single hang case, so that is consistent at least. We left the ETMY with the main chain top mass locked and the reaction chain UIM and PUM locked, in case some measurements need to be repeated after I look at them in more detail. I plan to post the measurements to the log as I look at them in more detail.
This is the commercial software controlling the Lighthouse particle counters in the H1 PSL enclosure. Logging into h0dust (Windows 7 Pro SP1 64 bit virtual machine) through VNC this afternoon I found the error message in the attached pictures. I found two related events under Event Viewer (Local) -> Windows Logs -> Application on 2/7/2014 11:02:01 AM. The text of the errors is attached. Searching for related information I found the following: http://support.microsoft.com/kb/2640103
It looks like the LMS software install includes the .NET 4 runtime, but it was probably out of date at install. 4.5.1 is available through Windows Update, I would assume it includes the fix mentioned in the KB article (since it's over a year old now), but I haven't been able to confirm what's included in the update. It's probably the first thing to try though, but it means downtime for the updates to install.
Kiwamu, Lisa There has been some confusion about the power we were measuring in the REFL path, compared to the expected one. Most of the confusion was due to a BS in the in air path which was forgotten to be taken into account, and the assumption of getting 10 W back from PRM, while it is significantly less than that. The previous entry was right in the final message, but a couple of things were wrong...so I post another summary here.
I was on a mission of figuring out what we need to get done for running the OAF (Online Adaptive Filtering) model. I started the mission from simply copying Livingston's model. It seems that there are many things to be done mainly on some other models e.g. HEPI, ISI and PEM models.
Here are the items we have to do to get the model fully compiled:
All ISIs already are sending out their final stage's GS13s for general consumption. However, we should check what LLO does with these signals before just blindly copying -- if it's just to calibrate and project into the suspension point basis, then it will be redundant with what's already done in the suspension models. Since none of the SUS models are not running close to their cycle computation limit, the move would merely be for aesthetics...
After correcting some cabling problems with H1-SR3, we set the open light, offsets, and gains as listed in the table below. The BOSEMs have been centered and set to 50% light. M1 level TFs are running over night to establish the baseline ahead of the glass mass installation. OSEM OL Gain Offset M1T1 20302 1.478 -10151 M1T2 31863 0.942 -15931 M1T3 31528 0.952 -15764 M1LF 23046 1.302 -11523 M1RT 27603 1.087 -13802 M1SD 23250 1.290 -11625 M2UL 25177 1.192 -12589 M2LL 24388 1.230 -12194 M2UR 27146 1.105 -13573 M2LR 25803 1.163 -12901 M3UL 25486 1.177 -12743 M3LL 27961 1.073 -13980 M3UR 25580 1.173 -12790 M3LR 25809 1.162 -12905
We ran Phase 3a Power Spectra on H1-SR2 this morning. The results look acceptable. The data plot files are posted below. All scripts and data files have been committed to the SVN repository
Atmospheric pressure now on outboard side of 8" gate valve's gate -> Actuator now labeled "Do not Operate" -> Valve will be opened only when HAM3 is vented
Heavy snow onsite – arms drivable with caution
PSL enclosure in Science Mode. LVEA in laser SAFE.
859 - JeffB and Andres out to HAM4 to make adjustments to SR2
900 – 1200, Mitch & Gerardo working at LVEA test stands
0920 - 1020 RichardM to EY to check on TMS signaling error
930 – MindyJ doing TCS plumbing inspection in LVEA
931 – Jim to CER to investigate H1IOPSUSAUXH56 failure
936 – 959 – Sheila out to LVEA racks
941 – 1025 Jax, Alexa to EX
1039 - 1124 – Karen to EX
1000 – Keita and Corey at EY for TMS work
1115-1200, 1322 – Jax working on ISCTEY in LVEA Squeezer Bay
1159 – LVEA rollup door near CER used
1310-1325 Betsy down to EY briefly for parts
1402 – 1310 JohnW plowing X-arm with tractor
1415 – Fire Alarm testing in OSB (HFD)
1426 – 1537 Kyle Soft Closing GV-7 (WP4430)
1450 – Arnaud taking measurements at EX
1523 – JeffL and JeffB working at HAM5 cleanroom
The h1build computer needed to be rebooted, it appears there was a kernel panic.
J. Kissel, A. Staley Alexa found that an odd discrepancy between her model and measurement of the ALS CARM open loop gain transfer function. It turns out this odd discrepancy uncovered an oversight in the suspension coil driver compensation for the MC2 M2 stage. While this compensation was corrected for the other two modified drivers on H1 PRM and H1 SRM back in September (see LHO aLOG 7644), correcting the compensation on MC2 was skipped in favor of keeping the IMC locked, and then it fell off the radar. While this favor is still in place for this evening's integrated testing activities, we'll fix the problem tomorrow. In the mean time, the details of the difference in compensation filters are below, so one can include the ratio in one's model: Current Should Be FM1 zpk([8.99999],[81.9932],1,"n") zpk([13],[64.9966],1,"n") FM2 zpk([1.05],[45.9988],1,"n") zpk([11;20.9999],[1;209.887],1,"n") FM6 zpk([81.9932],[8.99999],1,"n") zpk([64.9966],[13],1,"n") FM7 zpk([45.9988],[1.05],1,"n") zpk([1;209.887],[11;20.9999],1,"n") where "should be" is confirmed by the definitive list of measured poles and zeros for each state of each driver, LLO aLOG 4495
HAM3-ISI tripped recently and needed to be turned back on. Commissioners noticed that the command buttons were not working anymore.
It turns out that someone ran an SVN update on the following file: /opt/rtcds/userapps/release/isi/common/scripts/HAMISItool, which was to be updated along with new models, screens and scripts, after testing at MIT. Having a model/script mismatch, the command script would be looking for inexistent channels, and fail.
I reverted HAMISItool to -r5830. This script should not be updated from the SVN again, until the latest HAM-ISI update gets propagated.
HAM3-ISI was turned back on with Isolation Lv3 and 01_28 blend filters. Target values were not changed to ensure returning to previous alignment.
The WD plotting software, which lives in the same folder, had stoped working too. It turns out that the related scripts were updated too, while they should not have been yet.
I reverted opt/rtcds/userapps/release/isi/common/scripts/wd_plots/ to -r6477, and the WD plotting software works again.
My bad, I updated the directory before modifying BSCISItool !
Brett is visiting to measure specific modes of the QUAD, so this morning we setup equipment and prepped the QUAD for this. Working around the ongoing TMS work, we clamped only the top mass of the main chain, and the UIM and PenRe of the reaction chain. Richard laced some cables in order to access some temporary PEM channels for this use - the BNCs are running under the rollup door corner from the high bay racks. Brett has a QPD setup on an IAS tripod which easily moves around the QUAD as he needs.
Here is the list of commissioning task for the next 7-14 days:
Green team:
Red team:
Blue team (ISCTEY):
TMS:
SEI/SUS team:
In support of EY SUS installation installed 3 temporary BNC cables to PEM AA chassis H1:PEM-EY_TILT_VEA_FLOOR_X H1:PEM-EY_TILT_VEA_FLOOR_Y H1:PEM-EY_TILT_VEA_FLOOR_T For an ontrack photo diode readout.
The Green Team was able to give up the machine for a moment and so the ISI was put back to where it should be. The GT had Stage1 at Lvl2 with TCrappy and Stage2 with 750mHz blends at lvl1 Isolation.
Stage2 was ctrlDown'd but when Stage1 was ctrlDown'd it triggered Stage2 to damping only. Stage1 was then Isolated with Lvl3; this now includes a 60Hz notch. Stage2 was brought up to Lvl3 with TCrappys but after a minute or two it was obvious it was ringing up. Stage2 was ctrlDown'd again and Isolated again with Lvl2 and TCrappy blends.
The Green Machine seems to be content with the performance for now.
The problem with the Position Target setting has not been investigated.
Modified black glass holders worked only for some Siskiyou mounts, not all.
Some screw heads are sticking out more than the others. I could have forced it really hard and probably it would have fit, but I didn't want to risk changing the alignment. Another round of clean milling job was done, parts will go to air bake again on Monday.
TMS was balanced nicely at the level good for IAS.
We put everything except the black glass holders on the table (we put black glasses themselves directly on the table at their approximate positions).
Added two 200 grams masses to compensate for the fact that we removed Hartman reference path mirrors and mounts (480 grams together). Combined with 8 pieces of black grasses, this should be close enough.
We changed the cable bracket position to prevent cable interference.
After these, we balanced both the top mass and the table by using slide masses.
No signal from TMS BOSEMs.
BOSEM cables were connected but I don't see anything in the digital world.
Ideally, we'd like IAS to work while TMS is damped.
This morning Richard powered up the TMSy AA chassis and I plugged in the satellite box end of the test cables.
TMS Cable Installed
Unfortunately, we installed the Lower Structure before installing a cable, so an easy job was made much harder, but it was done. Our damaged D1000223 cable for the Beam Diverter was replaced with a D1000225 s/nS1106887. This is a variance from the Cable Harness Routing Config (D1200111).