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1 Calculation of first filter

Detailed calculations of length sensing and control (LSC) feedforward have pre-
viously been reported in VIR-050A-08, but here I will re-calculate the filters
required for Advanced LIGO, as opposed to Initial Virgo. Figure 1 here is
equivalent to Figure 1 of the Virgo document, with the exception that we actu-
ate not on the ETMs but on the ITMs differentially. The example here is for
the MICH length degree of freedom as noted by the subscript ‘M’ in variables,
but is applicable to any length degree of freedom.

Triangles denoted by ‘F’ in Figure 1 represent the frequency dependent dig-
ital control filters for both DARM and MICH. Squares denoted by ‘P’ repre-
sent the frequency dependent physical plants, including the actuation, optical
plant and any analog electronics. Diamonds denoted by ‘S’ represent frequency-
independent sensors. Any frequency dependence is included in ‘P’. P(M→SD)

represents the coupling of MICH actuation to DARM sensing, while P(α→SD)

represents the actuation from the output of the feedforward filter α to DARM.
MICH actuation noises are represented by nact, while MICH sensing noises are
represented by nsen.
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Figure 1: Loop diagram for calculation of first LSC feedforward filter.
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The goal of the LSC feedforward is to remove the effect of nact and nsen
in the DARM sensor SD. However, the sensing noise will dominate over the
actuator noise, so in the following calculations we will ignore nact, although it
can be added back into the calculations if desired.

First we will calculate the noise at point x, in the absence of any feedforward,
i.e. α = 0. We write the usual equation for determining the noise at x in
the presence of the closed-loop MICH loop in Equation 1, and solve for x in
Equation 2.

x = (xP(M→SM) + nsen)FM (1)

x = nsenFM

(
1

1− P(M→SM)FM

)
(2)

We then write the equation for noise at the DARM sensor, in the presence
of the DARM loop, coupling from MICH, and feedforward from MICH. This
will allow us to determine the optimal feedforward filter α. Writing SD in the
presence of these loops gives

SD = SDP(D→SD)FD + xP(M→SD) + xαP(α→SD). (3)

or

SD =

(
1

1− P(D→SD)FD

)(
P(M→SD) + αP(α→SD)

)
x. (4)

Note that here we have assumed that nact is non-existant, and that the input
to α and P(M→SD) are identical. Substituting in Equation 2 gives

SD =

(
1

1− P(D→SD)FD

)(
P(M→SD) + αP(α→SD)

)
nsenFM

(
1

1− P(M→SM)FM

)
.

(5)
We remove nsen from SD by setting

P(M→SD) + αP(α→SD) = 0. (6)

Solving for α,

α = −
P(M→SD)

P(α→SD)
. (7)

Intuitively this makes sense as measuring the coupling from MICH to DARM,
and dividing out the actuation transfer function.

We note that measuring the transfer functions required for determining α
is easier to do when α = 0. We calculate the signal at the DARM sensor SD,
including the coupling from MICH to DARM, PM→SD . Since the MICH sensor
noise is included in the noise at x, we will not write nsen explicitly in Equation 8

SD = SDP(D→SD)FD + xP(M→SD). (8)
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Solving for SD gives

SD = xP(M→SD)

(
1

1− P(D→SD)FD

)
. (9)

We will eventually need to measure the transfer function SD

x from MICH to
DARM, so we write that explicitly in Equation 10,

SD

x
= P(M→SD)

(
1

1− P(D→SD)FD

)
. (10)

To determine P(α→SD), we will need to measure the transfer function SD

y , so
we write SD’s response similar to Equation 8

SD = SDP(D→SD)FD + yP(α→SD). (11)

Solving for SD

y gives

SD

y
= P(α→SD)

(
1

1− P(D→SD)FD

)
. (12)

Finally, we note that the ratio of the transfer functions in Equation 10 and
Equation 12 is equal to −α

α = −
(
SD

x

)(
SD

y

) . (13)

In practice, SD

x is measured from MICH OUT to DARM IN. We do not have
excitation points at the output of the filter banks, so we drive at MICH IN.

Once we have calculated a frequency-dependent α, we must use a fitting
program such as Vectfit to extract a model for the filter that can be utilized
in LIGO’s front end system. We will often also add elements to the filter path
such as AC-coupling via a high-pass filter, a high frequency roll-off filter, and
notches so as not to excite fundamental modes of the optics being driven.

2 Calculation of iterative filters

Often, the fit to the calculated filter will not be perfect, or frequencies with
low measured coherence will affect the fit. Also, extra elements such as AC-
coupling and roll-off filters will affect the phase of the feedforward filter in the
band of interest. For this reason, it is useful to be able to iteratively update the
feedforward filter. However, this must be done with the existing feedforward
turned on, so the loop calculations are somewhat more complicated. Figure 2
is very similar to Figure 1, but has the iteratively updateable portion of the
feedforward filter explicitly separated into a series filter β. The point x in
Figure 1 has been renamed z in Figure 2 for clarity. Measured transfer functions
SD

x and SD

y imply the use of results from the calculation of the original filter
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α, while measured transfer function SD

z will be a fresh measurement for the
calculation of β. Note that α here must represent the actual filter in use for the
feedforward system, such that it includes any extra elements such as the high-
and low-passing.
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Figure 2: Loop diagram for calculation of iterative LSC feedforward filter.

First we will calculate the noise at SD, equivalent to Equation 3

SD = SDP(D→SD)FD + xP(M→SD) + zαβP(α→SD). (14)

Solving for SD and recognizing that z ∝ nsen just as x ∝ nsen in Equation 2, we
find

SD =

(
1

1− P(D→SD)FD

)(
P(M→SD) + αβP(α→SD)

)
nsenFM

(
1

1− P(M→SM)FM

)
.

(15)
Eliminating the effect of nsen on SD, we will set

P(M→SD) + αβP(α→SD) = 0. (16)

This gives

β = −
P(M→SD)

αP(α→SD)
. (17)

In order to measure the required transfer functions for Equation 17, we will
calculate SD

z with β set to 1. This is an extension of Equation 8:

SD = SDP(D→SD)FD + zP(M→SD) + zαP(α→SD). (18)

Solving for SD

z gives
SD

z
=
P(M→SD) + αP(α→SD)

1− P(D→SD)FD
. (19)
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We solve Equation 19 for P(M→SD), which we will insert into Equation 17,

P(M→SD) =

(
SD

z

)(
1− P(D→SD)FD

)
− αP(α→SD). (20)

Similarly, we need to solve Equation 12 for P(α→SD) to insert into Equation 17,

P(α→SD) =

(
SD

y

)(
1− P(D→SD)FD

)
. (21)

Plugging Equation 20 into Equation 17, we find

β = −
(
SD

z

) (
1− P(D→SD)FD

)
− αP(α→SD)

αP(α→SD)
(22)

β = 1−
(
SD

z

) (
1− P(D→SD)FD

)
αP(α→SD)

. (23)

Inserting Equation 21 gives

β = 1−
(
SD

z

) (
1− P(D→SD)FD

)
α
(
SD

y

) (
1− P(D→SD)FD

) (24)

β = 1−
(
SD

z

)
α
(
SD

y

) (25)

This requires knowledge of the “actuator” portion of the initial α calculation,
from the transfer function SD

y , the pre-existing feedforward filters, and a fresh
measurement of the coupling by measuring between MICH OUT and DARM
IN. Equation 25 should converge to a flat response of 1 when there is no more
coupling of MICH noise into the DARM sensor, i.e. when SD

z is very small.
This iterative procedure can be repeated as many times as necessary. For

any future iterations, the β calculated here is subsumed into α as a pre-existing
filter, and a new β can be found.
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