Reports until 15:35, Thursday 13 November 2014
H1 SUS (DetChar, ISC)
jeffrey.kissel@LIGO.ORG - posted 15:35, Thursday 13 November 2014 - last comment - 10:16, Friday 14 November 2014(15039)
H1 SUS ETMY Investigation Continues
J. Kissel, A. Staley, K. Izumi, K. Kawabe

Continuing investigations of why ETMY behaves poorly when attempting ALS DIFF (see LHO aLOG 15037) -- I've looked at two more things:
(1) Pitch-only optical lever Damping: This had been turned on only *after* it had been decided that ETMY was "fragile," i.e. any impulses would shake the SUS quite a bit -- but I checked it anyways. First attachment is comparing spectra with the PUM (L2) stage actuated, optical lever Pitch damping loop ON vs. OFF. It's damping pitch, as expected, and not injecting anything terrible. This of course is assessing the stationary noise, and we're worried about non-stationary problems ... but ruling things OUT with quantitative data, I feel, is just as important along the investigatory route.

(2) DRIVEALIGN Matrices: I attach comparisons between everything in the ETMs UIM (L1) DRIVEALIGN matrices (Only the P2P, Y2Y, and L2P have anything in them, so those are what's compared in the attachment). I believe the original design intent for P2P and Y2Y filters was to have global WFS transfer function be similar to the test-mass transfer functions -- hence the high-Q, plant inversion-y type stuff. They are slightly different between the two test masses, but, in-fact, they don't matter matter at all because we don't feed any angular signals to the UIM stage. 

However, I've found that the ETMY UIM L2P frequency-dependent decoupling filter in the UIM bank is significantly different than ETMX's -- and the filter has a much larger step response. I compare three different sets of filters on pgs 1 and 2:
ETMX -- FM1 & FM2, "L2P" & "L2P2" 
ETMY, Current -- FM1, FM2, & FM4 "L2P", "L2P2", and "BetterRolloff"
ETM, Legacy -- FM6 & FM7,  "L2Plegacy" & "L2P2legacy" 
It looks like the initial story here is laid out in LHO aLOG 11832, but there're several more aLOGs referencing UIM / L1 L2P Filters, and how they've been bad, they've been good, they've been turned off, they've been turned on...

The foton calculation of the step response disagrees with the measured step response LHO aLOG 14832 -- but recall that the filter step response is not the only thing measured in that 14832 measurement -- it's measuring both the filter AND mechanical step response. We now have local damping filters from LLO which has reduced the mechanical impulse response time by a factor of a few. This, coupled with a smaller impulse response filter should help, but we'll remeasure once a new filter is designed.

I'll move on to chasing this down -- re-measure the step response, and also remeasure the plant upon which these filters were designed.

Of course, an immediate, band-aid fix could be just to copy ETMX's L2P filter over to ETMY, but while we wait for the temperature in the VEAs to settle down, I've been given the green light to measure some TFs.
Non-image files attached to this report
Comments related to this report
alexan.staley@LIGO.ORG - 10:16, Friday 14 November 2014 (15059)

CORRECTION:

The first attached plot in alog 14832 shows the impulse reponse of ETMY L1 stage with:

  • ETMY, Current -- FM1, FM2, & FM4 "L2P", "L2P2", and "BetterRolloff"
  • ETMY, simple -- FM8 "z0.5p10"
  • ETMY, old roll off -- FM1, FM2 & FM3
  • ETMY, nothing -- all filters off

The trace the was *not* plotted was the ETMY, Legacy -- FM6, FM7. We had taken an impulse response of this configuration, but it was so bad that we did not leave it in the plot. Clearly this disagreed with Jeff's response.