This alog follows up LHO:81769 where I calibrated the ASC drives to test mass motion for all eight arm ASC control loops. Now, I have taken the noise budget injections that we run to measure the ASC coupling to DARM, and used that to calibrate an angle-to-length coupling function in mm/rad. I have only done this for the HARD loops because the SOFT loops do not couple very strongly to DARM (notable exception to CSOFT P, which I will follow up on).
The noise budget code uses an excess power projection to DARM, but instead I chose to measure the linear transfer function. The coherence is just ok, so I think a good follow up is to remeasure the coupling again and drive a bit harder/average longer (these are 60 second measurements). This plot shows the noise budget injection into calibrated DARM/ASC PUM drive [m/Nm] transfer function, and the coherence of the measurement.
I followed a similar calibration procedure to my previous alog:
I did not apply the drive matrix here, so the calibration is into ETM motion only (factor of +/-1), whereas the calibration into ITM motion would have an additional +/- 0.74 (+/- 0.72 for yaw) applied.
HARD Pitch Angle to Length coupling plot
HARD Yaw Angle to Length coupling plot
Overall, the best-measured DOF here is CHARD Y. In both CHARD Y and DHARD Y, there seem to be two clear coupling regions: one fairly flat region above 20 Hz in CHARD Y and above 30 Hz in DHARD Y, reaching between 20-30 mm/rad. Below, there is a steep coupling. This is reminiscient of the coupling that Gabriele, Louis, and I measured back in March and tried to mitigate with A2L and WFS offset. We found that we could reduce the flatter coupling in DHARD Y by adjusting the A2L gain, and the steeper coupling by applying a small offset in AS WFS A yaw DC. We are currently not running with that WFS offset. The yaw coupling suggests that we have some sort of miscentering on both the REFL and AS WFS which causes a steep low frequency coupling which is less sensitive to beam centering on the test mass (as shown by the A2L tests); meanwhile, the flat coupling is sensitive to beam miscentering on the test mass, which is expected (see e.g. T0900511).
The pitch coupling has the worst coherence here, but the coupling is certainly not flat. It appears to be rising with about f^4 at high frequency. I have a hard time understanding what could cause that. There is also possibly a similar steep coupling at low frequency like the yaw coupling, but the coherence is so poor it's hard to see.
Assuming that I have my calibration factors correct here (please don't assume this! check my work!), this suggests that the beam miscentering is higher than 1 mm everywhere and possibly up to 30 mm on the ETMs (remember this would be ~25% lower on the ITMs). This seems very large, so I'm hoping that there is another errant factor of two or something somewhere.
My code for both the calibrated motion and calibrated coupling is in a git repo here: https://git.ligo.org/ecapote/ASC_calibration
Today I had a chance to rerun these injections so I could get better coherence, injection plot. I ran all the injections with the calibration lines off.
The pitch couplings now appear to be very flat, which is what we expect. However, they are very high (100 mm/rad !!) which seems nearly impossible.
The yaw couplings still show a strong frequency dependence below 30 Hz, and are flat above, and around 30-50 mm/rad, still large.
Whether or not the overall beam miscentering value is correct, this does indicate that there is some funny behavior in yaw only that causes two different alignment coupling responses. Since this is observed in both DHARD and CHARD, it could be something common to both (so maybe less likely to be related to the DARM offset light on the AS WFS).
I also ran a measurement of the CSOFT P coupling, injection plot. I was only able to get good coherence up to 30 Hz, but it seems to be fairly flat too, CSOFT P coupling.
Edit: updated coupling plots to include error shading based on the measurement coherence.