Displaying reports 58161-58180 of 83394.Go to page Start 2905 2906 2907 2908 2909 2910 2911 2912 2913 End
Reports until 16:33, Monday 07 March 2016
LHO VE (VE)
gerardo.moreno@LIGO.ORG - posted 16:33, Monday 07 March 2016 (25921)
Manually over-filled CP3 at 00:05 utc

1/2 open LLCV bypass valve, and the exhaust bypass valve fully open.

Flow was noted after 95 seconds, closed LLCV valve, and 3 minutes later the exhaust bypass valve was closed.

Next over-fill on Thursday, March 9th before 23:59 utc.

LHO VE
kyle.ryan@LIGO.ORG - posted 16:11, Monday 07 March 2016 (25919)
Kyle & Gerardo -> Greased CS QDP80 rotor bearings using new AR555 grease


			
			
H1 ISC
kiwamu.izumi@LIGO.ORG - posted 15:17, Monday 07 March 2016 - last comment - 19:21, Monday 07 March 2016(25918)
cross spectrum analysis: now optical gain included

It turned out that all my previous analysis did not correct for the time-varying optical gain when calibrating the cross spectra into displacement even though I thought I have done it. I have recalibrated all the O1 data with the optical gain properly corrected.

Fortunately, the conclusions I have arrived so far qualitatively did not change.

Related alogs: 25847, 25768


Here are some plots with the newly calibrated cross spectra, mainly to show there is no drastic changes.

Fig.1 Band limited rms of the cross spectra in time series for the entireO1 run. The old data (without the optical gain correction) are show as "+" symbols while the recalibrated data are shown as dots.

Fig.2 Ratio of the band limited rms, (new data) / (old data). Notice that the high frequency bands (bands 3-8) tend to have larger displacement now. The low frequencies do not fluctuate as big as those for high frequencies as expected.

Fig.3 A naive correlation diagram in which the linear dependency between high frequency bands (bands 5-8) is still visible.

Fig.4 Time series plot of scaled band 8 BLRMS, LVEA temperature and scaled vertical sensors of various suspended optics.

Images attached to this report
Comments related to this report
kiwamu.izumi@LIGO.ORG - 18:21, Monday 07 March 2016 (25922)

A report on correlation with the optical gain.

It seems that the overall behavior of the optical gain shows correlation with the band limited rms. Is this calibration artefacts or something real ??

Darkhan provided me with kappa_c which was averaged over every 128 sec. In order for us to become less sensitive to glitches or some discontinuity in the Pcal line, we used kappa_c from the C02 frame that are smoothed by a median filter.  In the second figure, I overlaid the old rms data which I did not correct for kappa_c by accident (as described in the above entry). Both corrected and uncorrected rms show somewhat good correlation with the rms.

Images attached to this comment
Non-image files attached to this comment
kiwamu.izumi@LIGO.ORG - 18:38, Monday 07 March 2016 (25923)

The same analysis for the DARM cavity pole. Maybe correlated as well ?

Images attached to this comment
Non-image files attached to this comment
kiwamu.izumi@LIGO.ORG - 19:21, Monday 07 March 2016 (25924)

The attached is the DARM model that I have used for calibrating the cross spectra. OLGTF = sensing * (atst + apum ) * userd.

Non-image files attached to this comment
H1 General (OpsInfo, PSL)
edmond.merilh@LIGO.ORG - posted 14:24, Monday 07 March 2016 (25917)
PSL Weekly 10 day trends and Status
Laser Status:
SysStat is good
Front End power is 32.01W (should be around 30 W)
Frontend Watch is GREEN
HPO Watch is RED

PMC:
It has been locked 12.0 days, 22.0 hr 9.0 minutes (should be days/weeks)
Reflected power is 3.078Watts and PowerSum = 25.24Watts.

FSS:
It has been locked for 0.0 days 0.0 h and 15.0 min (should be days/weeks)
TPD[V] = 1.466V (min 0.9V)

ISS:
The diffracted power is around 8.465% (should be 5-9%)
Last saturation event was 0.0 days 0.0 hours and 15.0 minutes ago (should be days/weeks)

For further in-depth analysis of the trends, please refer to Jason O., Pete K. or Rick S.
Images attached to this report
H1 General (OpsInfo, PSL)
edmond.merilh@LIGO.ORG - posted 14:08, Monday 07 March 2016 (25916)
PSL Chiller Water
FAMIS#4140  closed
H1 CDS
james.batch@LIGO.ORG - posted 14:05, Monday 07 March 2016 (25915)
Restarted h1cam18 (Camera 18)
I have power-cycled camera 18 and restarted it's server. It appears to be working again.  My first try at just restarting the server didn't work, only after power cycling the camera did it appear to be working.
H1 TCS (TCS)
huy-tuong.cao@LIGO.ORG - posted 11:52, Monday 07 March 2016 (25912)
ITMX HWS aligned and working as expected

After the removal of polarization sensors for ITMX HWS an adjusting HWS STEER M10 to center onto ITMX HWS, as reported in alog25718 , we performed CO2 and RH tests on the ITMX HWS. The results show that the ITMX HWS beam is aligned and working as expected.

CO2 Test:

         We performed the CO2 test on March 1, turning up the CO2 laser deliver power to 4W between 1140906458 and 1140908050. The spherical power behaves as expected (see image CO2_ITMX_1Mar_SP.png )

                             - The spherical power increases up until tthe CO2 is turned off with the maximum change in spherical power of about 60 microdiopters

                              -After CO2 laser is turned off, the spherical power can be seen to decrease slowly before the ITMX HWS is stopped streaming

           The gradient plot also shows this change in spherical power:

                             -All arrows are pointing inward towards the location where the CO2 beam is positioned on the test mass (see image CO2_ITMX_Gradient_1Mar.png) , which has an offset towards the +ve y-direction and -ve x-direction from the centre of the HWS beam. 

                             Since the CO2 laser beam alignment is optimized for interferometer beam, an offset is acceptable.

RH Test:

              We performed the RH test on March 6 to check for the alignment of the ITMX HWS beam on the test mass. The HWS ran between 1141342135 and 1141351367. Both upper and lower RH's on ITMX is turned on to 1W for two hours between 1141342544 and and 1141349746. The recored spherical power also behaved as expected (see image RH_ITMX_5Mar_SP.png):

                               -The spherical power starts decreasing slowly as the RH is turned on.

                               - After  RH run,  the maximum decrease in spherical power is approximately 70 microdiopters before starting to increase back to 0 again. The time scale between after RH is off and increase in spherical power is about 30 minutes.

               The gradient plot shopws the evidence of this change in spherical power. All arrows grow outwards from the center and distributions of dx and dy change are more or less uniform around 0 (no apparent skewness) , which also imply that the ITMX HWS beam is correctly aligned on the center of ITMX. (see image  RH_ITMX_Gradient_6Mar.png ).

 

     

Images attached to this report
H1 AOS
sheila.dwyer@LIGO.ORG - posted 11:17, Monday 07 March 2016 (25911)
ETMY M0 drive align P2P and Y2Y filters causing problem with offloading green wfs

For a long time we have not been offloading the green wfs from ETMY, because doing so would with the same code we use for END X would cause the optic to get a big kick.  This morning Jim and I gave this another try, and saw that the main difference between the test masses is that ETMY had some plant inversion from 1-10 Hz, when we turned this off we could offload ETMY without a problem. 

Apparently the current arrangement of ETM WFS used durring ALS locking needs these plant inversions to be on. 

H1 SYS
daniel.sigg@LIGO.ORG - posted 09:29, Monday 07 March 2016 (25909)
Commissioning Schedule

Monday: Low noise, Locking during med wind/useis

Tuesday: Maintenance (entire day)

Wednesday: SRC/TCS morning/afternoon, Low noise afterwards

Thursday: Low noise, WFS/90MHz centering

H1 TCS (TCS)
aidan.brooks@LIGO.ORG - posted 08:33, Monday 07 March 2016 (25907)
Serial numbers of currently installed HWS SLEDs

[Kiwamu, Aidan]

Courtesy of Kiwamu, a couple of photos that show the currently installed HWS SLEDs.

HWSY: QSDM-840-5_12.02.44

HWSX: QSDM-790-5_12.05.21

Images attached to this report
H1 TCS
huy-tuong.cao@LIGO.ORG - posted 19:12, Sunday 06 March 2016 - last comment - 06:35, Thursday 10 March 2016(25905)
Identifying HWSY beam reflected off HR surface of ITMY

[Aidan, Kiwamu, Elli, Cao]

SUMMARY:

We prformed a definitive test to confirm the HWSY beam reflected off the HR surface of ITMY. The test arrived at the same conclusion as a previous test reported in alog25617.

The beam reflected from HR surface is the one observed at :

                    SR3 PITCH: 1458 urad

                    SR3 YAW :  -216.9 urad

(The nominal value of SR3 PITCH and YAW at the moment are 563 and -153.9)

METHOD:

         1. We turned of SR3 CAGE SERVO, and initiate excitations of PITCH and YAW of  SR3. These excitations ran for about 5 hours yesterday, between 1141238996 and 1141254773 (gps time)

             

Excitation Amplitude (urad) Frequency (mHz)
PITCH 1500 10.3
YAW 2000 3.7

        This allowed us to scan SR3 and map out all the possible reflected beams onto the HWSY from the TOTAL_PIXEL_VALUE recorded by the HWSY.

Show_REFL_log_5Mar.png shows the map of the four possible reflected beams. The SR3 pitch and yaw values of  these four spots are recorded in the following table.
Spot PITCH (urad) YAW (urad)
1 563.4 -153.9
2 1458 -216.9
3 1332 -1220
4 626.3 613.3

We will use the numbers to refer to each spot in the rest of this report. We are currently centered on beamspot 1

          2. We modify the HWS magnification H1:TCS-ITMY_HWS_MAGNIFICATION from 17.5 to 7.5 according to T1400686

         3. This morning, we moved SR3 alignment to the PITCH and YAW values corresponding to the four spots. At each spot:

                         - Stream the HWS images to make sure the spot was centered

                         -Create a new folder that does not contain reference *.mat file so the HWSY take new reference each time a new spot was centered.

                         -Start HWS and steam data

                         -Initiate 50 mHz, 2urad amplitude excitation on ITMY YAW (H1:SUS-ITMY_M0_OPTICALIGN_Y_EXC)

                         -Observe the changes in the three signals:

                                    1. H1:SUS-ITMY_L3_OPLEV_YAW_OUTPUT (OPLEV Yaw)

                                    2. H1:SUS-ITMY_M0_OPTICALIGN_Y_OUTPUT

                                    3. H1:TCS-ITMY_HWS_PROBE_PRISM_X (Prism X)

                         - Let the excitation run for 5-10 mins, turn off the excitation, let the OPLEV Yaw and Prism X signals to stabilize and epeat the procedure for all the spots.

        4. We then plot the signals H1:TCS-ITMY_HWS_PROBE_PRISM_X and H1:SUS-ITMY_L3_OPLEV_YAW_OUTPUT and compared the magnitude of oscillation in Prism X measured (if any). The one that has the largest 50 MHz signal is the one reflected off the HR surface of ITMY.

shows the four plots of time series of H1:TCS-ITMY_HWS_PROBE_PRISM_X signal compared to H1:SUS-ITMY_L3_OPLEV_YAW_OUTPUT.  From these plots:

                    Beam spots 3 and 4: definitely do not reflected from any surface of ITMY since there is no evidence of 50 mHz oscilliation. They may come from the CP, which fit with the fact that CP is horizontally wedged.  It is also interesting to note that the Prism X values for these two beams decrease contiously during measurement.

                    Beam spots 1 and 2: these two beams come from the 2 surfaces of ITMY.

                                                         The oscillation in X prism measured for beamspot 1 has an amplitude of approximately 0.6±0.2 urad

                                                         The oscillation in X prism measured for beamspot 2 has an amplitude of approximately 1.5±0.2 urad

                                                         Therefore, the magnitude of oscillation in x prism for beamspot 2 is greater. This can be clearly seen if the two time series are plotted together:

                                                        

and it is also supported by the spectrum plot of the two signals with the spectrum of  Prism X of beamspot 2 having a larger peak at 50 mHz (red trace):
CONCLUSION:
We are currently centered on the wrong beam. We will need to realign such that beamspot 2 is centered on the HWSY. This will involved moving the periscope mirrors . Our previous attempt to walk this beam onto the the HWSY while returning SR3 to nominal values have resulted in some clipping of the beam. So it will be important to identify where the clipping of the beam occurs.
Images attached to this report
Comments related to this report
kiwamu.izumi@LIGO.ORG - 05:22, Monday 07 March 2016 (25906)

I remember that the clipping we saw was by the first steering mirror in the HAM4 chamber. I could see a bright scattering from the view port with an IR viewer.

kiwamu.izumi@LIGO.ORG - 06:35, Thursday 10 March 2016 (25981)

We reproduced the clipping today on Mar 9th. We confirmed that the clipping occurred at the first in-vac lens (see HAM4 drawing), not the steering mirrors.

H1 TCS (TCS)
aidan.brooks@LIGO.ORG - posted 15:23, Sunday 06 March 2016 (25904)
IFO mode simulation running - still needs to be calibrated

The TCS IFO mode simulation is running online and producing esimates for the round-trip Gouy phase of the SRC and PRC, the g-factors and HOM spacing of the X and Y arms. The assumed absorption in the optics is set to 250ppb per test mass but the arm power needs to be properly calibrated. However, when we see approximately 10mW of absorbed power in each of the test masses, we expect to see:

Images attached to this report
LHO VE
kyle.ryan@LIGO.ORG - posted 13:04, Sunday 06 March 2016 - last comment - 14:48, Sunday 06 March 2016(25902)
Kyle to X-end VEA - Expect to return in 2 hours


			
			
Comments related to this report
kyle.ryan@LIGO.ORG - 14:48, Sunday 06 March 2016 (25903)
1445 hrs. local -> Back from X-end
H1 AOS (PSL)
eleanor.king@LIGO.ORG - posted 09:11, Sunday 06 March 2016 (25901)
ISS refsignal set to -1.97V

This morning the PSL diffracted power was oscillating.  We set H1:PSL-ISS_REFSIGNALto -1/97V, making the diffracted power ~7%. (Refsignal was -2V).

H1 ISC
sheila.dwyer@LIGO.ORG - posted 23:04, Saturday 05 March 2016 - last comment - 02:07, Sunday 06 March 2016(25896)
a little more ASC work

Rob, Evan, Sheila

We have been doing a little bit more work on ASC today. The main messages:

First we measured the DC centering loops for different configurations, because we have had different measurements come to different conclusions in the last few days about the stability of these loops.  The gain of these loops is the same with no ASC on, with full DRMI ASC on, and in full lock without a DARM offset or any ASC on.  However, changing the DARM offset changes the response of these loops (especially DC3, which is centering AS A), somehow adding more phase at the ugf for DC3 P+Y.  The first four attachments are comparisions of the loop gains with and without a DARM offset on.  The coherence is not good for the DC3 P measurement with a DARM offset on, the rest of the coherences are fine.

We then looked at the sensitivity of the TMS QPDs to transmon motion.  We had originaly choosen a combination of QPDs that was insensitive to pit and yaw, but Rana has told us that at LLO it is more important to be insensitive to roll.  We looked 60 day trends of the osems, and moved TMS some amount that was comparable to the drift according to the osems, and looked at the QPD response. If we believe the osems, the pit and yaw drifts are the most important for the QPDs by far, although for TMS Y there was also a small reponse to Roll and V (pushing on V also moved pit and yaw according to the osems, so this may explain the coupling of V to the QPDs). 

Then we drove the transmons at 1.3 Hz and found the combination of QPDs that was least sensitive to TMS pit and yaw.  We had done this last time in April, I think.  We improved the sensitivity to all 4 angles by at least a factor of 10. The new input matrix is shown in the 5th attachment.   We then closed the soft loops, without adjusting the offsets to account for the new input matrix (seems OK so far).  Since the new input matrix is normalized so that the elements from each arm are 1, the digital gain for the soft loops is increased by 50%. 

The first time we powered up I had tried increasing the offloading gain on all test masses by 20 dB, this may or may not have been the cause of a very slow instability where PRC2 Y, DSOFT and CSOFT rang up and eventually broke the lock. 

Rob had a look at why we had been unable to run Gabriele's sensing matrix script.  We would like to use this script instead of the lockins because we can easily add some sensors that aren't in the lockin matrix like the centering signals.  One thing we noticed is that while we can easily add the DC centering signal, the RF centering signals are not in the frames.  We probably want to add these to the frames anyway.

Images attached to this report
Comments related to this report
robert.ward@LIGO.ORG - 02:05, Sunday 06 March 2016 (25897)
There were a couple of issues in the script, including an incorrect sampling frequency as well a hanging call to the python nds2 library and apparently some changes to markup.py.  I have a version I'm working with in my home/scripts directory that used cdsutils instead.  Here is the ASC PIT sensing matrix, measured in DC READOUT at 2W:



Sensing matrix measurement


Sensing matrix (abs)

Excitation: H1:ASC-INP1_P_SM_EXC H1:ASC-PRC1_P_SM_EXC H1:ASC-PRC2_P_SM_EXC H1:ASC-MICH_P_SM_EXC H1:ASC-SRC1_P_SM_EXC H1:ASC-SRC2_P_SM_EXC H1:ASC-DHARD_P_SM_EXC H1:ASC-CHARD_P_SM_EXC H1:ASC-DSOFT_P_SM_EXC H1:ASC-CSOFT_P_SM_EXC
Monitor channel: H1:ASC-INP1_P_SM_DQ H1:ASC-PRC1_P_SM_DQ H1:ASC-PRC2_P_SM_DQ H1:ASC-MICH_P_SM_DQ H1:ASC-SRC1_P_SM_DQ H1:ASC-SRC2_P_SM_DQ H1:ASC-DHARD_P_SM_DQ H1:ASC-CHARD_P_SM_DQ H1:ASC-DSOFT_P_SM_DQ H1:ASC-CSOFT_P_SM_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ 2.4e-06 2.0e-08 1.7e-06 9.7e-07 1.2e-06 7.4e-05 4.3e-07 3.0e-08 3.9e-08 2.9e-08
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ 1.7e-02 5.8e-04 8.7e-02 3.6e-03 1.1e-02 1.6e+00 2.6e-04 5.4e-06 8.9e-05 4.0e-05
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ 3.0e-02 4.7e-04 4.6e-02 8.2e-03 2.0e-02 2.6e+00 1.7e-04 1.4e-05 2.8e-04 4.3e-05
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 3.5e-03 6.5e-05 1.3e-02 1.7e-03 2.2e-03 3.5e-01 1.0e-05 7.6e-06 6.1e-05 6.6e-07
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ 1.2e-03 1.9e-04 2.0e-02 5.7e-03 1.7e-02 1.1e+00 3.0e-03 2.3e-04 2.8e-04 1.7e-04
H1:ASC-AS_B_DC_PIT_OUT_DQ 5.8e-07 8.2e-08 1.0e-05 5.4e-07 2.4e-06 9.0e-05 3.0e-07 1.6e-08 2.9e-08 2.3e-08
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ 1.3e-02 1.7e-04 3.7e-02 3.1e-03 2.0e-02 2.2e+00 3.1e-04 2.3e-05 6.8e-05 6.2e-05
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ 1.9e-02 1.8e-04 3.2e-02 9.1e-03 9.8e-03 1.7e+00 1.3e-04 2.1e-05 2.8e-04 1.5e-05
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ 3.1e-03 1.1e-04 1.8e-02 1.2e-03 3.9e-04 2.1e-01 2.7e-05 6.8e-06 4.3e-05 1.7e-06
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 1.3e-02 5.2e-04 6.4e-02 4.5e-03 1.9e-02 9.8e-01 2.7e-03 2.3e-04 2.4e-04 1.8e-04
H1:ASC-AS_C_PIT_OUT_DQ 1.5e-06 1.1e-07 1.5e-05 1.9e-07 2.9e-06 1.3e-04 9.4e-08 3.8e-09 6.9e-09 8.7e-09
H1:ASC-REFL_A_DC_PIT_OUT_DQ 3.6e-06 3.8e-08 1.2e-05 1.1e-06 7.8e-08 1.1e-05 8.2e-08 8.0e-08 1.1e-08 3.2e-08
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 1.9e+00 1.9e-03 3.9e-01 2.0e-03 3.0e-03 6.4e-01 2.1e-05 3.7e-04 1.9e-05 8.8e-05
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 3.8e-01 2.6e-04 4.5e-02 4.0e-04 2.0e-04 7.5e-02 1.5e-05 1.0e-04 1.3e-05 1.3e-05
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ 2.0e+00 2.1e-03 1.4e-01 2.5e-03 1.3e-04 1.8e-01 3.4e-05 4.1e-04 4.1e-05 7.3e-05
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ 4.9e-01 6.3e-04 6.7e-02 9.6e-04 1.1e-03 1.3e-01 1.4e-06 1.1e-04 1.3e-05 9.3e-06
H1:ASC-REFL_B_DC_PIT_OUT_DQ 1.6e-04 4.5e-08 7.2e-06 1.0e-06 1.9e-07 1.2e-05 3.4e-08 3.8e-08 1.3e-08 2.7e-08
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ 1.7e+00 6.1e-03 3.8e-01 2.3e-03 3.5e-03 6.7e-01 5.0e-05 3.4e-04 1.5e-05 7.8e-05
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ 4.3e-01 1.2e-03 7.0e-02 4.4e-04 6.7e-04 1.2e-01 1.0e-05 4.7e-05 3.2e-06 1.5e-05
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ 1.9e+00 2.5e-03 2.0e-01 7.2e-04 4.4e-03 2.7e-01 4.8e-05 4.1e-04 3.6e-05 3.5e-05
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ 6.5e-01 6.1e-04 1.1e-01 1.5e-03 3.2e-03 3.2e-01 2.7e-05 1.4e-04 2.3e-05 1.8e-05
H1:ASC-POP_A_PIT_OUT_DQ 1.3e-06 3.6e-08 1.0e-06 9.5e-08 2.1e-08 1.9e-06 3.6e-10 6.6e-09 5.4e-10 4.3e-10
H1:ASC-POP_B_PIT_OUT_DQ 7.0e-07 9.7e-08 7.0e-07 5.5e-08 2.0e-08 1.9e-06 2.1e-09 2.8e-09 1.0e-09 6.0e-10
H1:ASC-X_TR_A_PIT_OUT_DQ 1.0e-06 1.1e-08 5.6e-07 1.9e-08 1.9e-07 1.3e-05 1.2e-08 1.1e-08 6.8e-10 3.9e-10
H1:ASC-X_TR_B_PIT_OUT_DQ 9.3e-07 1.0e-08 5.1e-07 1.1e-08 1.8e-07 1.2e-05 1.1e-08 1.1e-08 1.1e-09 9.4e-11
H1:ASC-Y_TR_A_PIT_OUT_DQ 6.1e-07 1.3e-08 8.7e-07 1.4e-08 1.9e-07 1.6e-05 1.2e-08 1.2e-08 1.3e-09 1.2e-09
H1:ASC-Y_TR_B_PIT_OUT_DQ 4.7e-07 1.2e-09 1.5e-07 2.8e-09 5.6e-08 2.1e-06 1.8e-09 1.7e-09 1.9e-09 2.0e-09

Coherence matrix

Excitation: H1:ASC-INP1_P_SM_EXC H1:ASC-PRC1_P_SM_EXC H1:ASC-PRC2_P_SM_EXC H1:ASC-MICH_P_SM_EXC H1:ASC-SRC1_P_SM_EXC H1:ASC-SRC2_P_SM_EXC H1:ASC-DHARD_P_SM_EXC H1:ASC-CHARD_P_SM_EXC H1:ASC-DSOFT_P_SM_EXC H1:ASC-CSOFT_P_SM_EXC
Monitor channel: H1:ASC-INP1_P_SM_DQ H1:ASC-PRC1_P_SM_DQ H1:ASC-PRC2_P_SM_DQ H1:ASC-MICH_P_SM_DQ H1:ASC-SRC1_P_SM_DQ H1:ASC-SRC2_P_SM_DQ H1:ASC-DHARD_P_SM_DQ H1:ASC-CHARD_P_SM_DQ H1:ASC-DSOFT_P_SM_DQ H1:ASC-CSOFT_P_SM_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ 0.04 0.43 0.65 0.65 0.85 0.64 1.00 0.78 0.71 0.88
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ 0.01 0.60 0.94 0.92 0.59 0.91 0.98 0.05 0.84 0.83
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ 0.01 0.29 0.64 0.98 0.66 0.89 0.94 0.15 0.97 0.78
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 0.01 0.30 0.89 0.89 0.58 0.88 0.27 0.23 0.94 0.01
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ 0.00 0.20 0.61 0.88 0.86 0.85 1.00 0.94 0.95 0.97
H1:ASC-AS_B_DC_PIT_OUT_DQ 0.00 0.90 0.98 0.40 0.94 0.70 1.00 0.54 0.65 0.78
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ 0.00 0.07 0.63 0.75 0.73 0.90 0.98 0.32 0.69 0.87
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ 0.01 0.12 0.67 0.98 0.52 0.84 0.92 0.30 0.97 0.31
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ 0.01 0.73 0.97 0.98 0.08 0.74 0.85 0.55 0.97 0.23
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 0.01 0.71 0.95 0.91 0.91 0.73 1.00 0.97 0.97 0.98
H1:ASC-AS_C_PIT_OUT_DQ 0.01 0.88 0.99 0.79 0.94 0.97 1.00 0.72 0.87 0.97
H1:ASC-REFL_A_DC_PIT_OUT_DQ 0.16 0.76 0.99 0.01 0.03 0.02 0.08 0.08 0.00 0.03
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 1.00 0.98 1.00 0.14 0.20 0.36 0.02 0.93 0.02 0.65
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 1.00 0.96 0.99 0.02 0.02 0.14 0.04 0.72 0.02 0.09
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ 1.00 0.99 0.97 0.03 0.00 0.06 0.01 0.69 0.01 0.13
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ 1.00 0.98 0.99 0.20 0.37 0.29 0.00 0.92 0.08 0.15
H1:ASC-REFL_B_DC_PIT_OUT_DQ 1.00 0.80 0.92 0.05 0.14 0.02 0.06 0.10 0.01 0.16
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ 1.00 1.00 1.00 0.52 0.28 0.43 0.37 0.98 0.05 0.83
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ 1.00 1.00 1.00 0.08 0.29 0.46 0.08 0.77 0.01 0.36
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ 1.00 0.99 0.99 0.02 0.53 0.12 0.11 0.93 0.04 0.18
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ 0.99 0.95 0.99 0.54 0.61 0.52 0.36 0.97 0.26 0.49
H1:ASC-POP_A_PIT_OUT_DQ 0.46 0.99 0.97 0.19 0.10 0.03 0.01 0.65 0.01 0.02
H1:ASC-POP_B_PIT_OUT_DQ 0.34 1.00 0.97 0.05 0.19 0.06 0.08 0.19 0.02 0.02
H1:ASC-X_TR_A_PIT_OUT_DQ 0.13 0.77 0.78 0.22 0.70 0.33 0.99 1.00 0.30 0.31
H1:ASC-X_TR_B_PIT_OUT_DQ 0.13 0.76 0.78 0.40 0.70 0.32 1.00 1.00 0.89 0.23
H1:ASC-Y_TR_A_PIT_OUT_DQ 0.06 0.80 0.89 0.41 0.67 0.47 1.00 1.00 0.91 0.98
H1:ASC-Y_TR_B_PIT_OUT_DQ 0.41 0.44 0.82 0.15 0.79 0.19 0.99 0.99 0.98 1.00

Sensing matrix (complex)

Excitation: H1:ASC-INP1_P_SM_EXC H1:ASC-PRC1_P_SM_EXC H1:ASC-PRC2_P_SM_EXC H1:ASC-MICH_P_SM_EXC H1:ASC-SRC1_P_SM_EXC H1:ASC-SRC2_P_SM_EXC H1:ASC-DHARD_P_SM_EXC H1:ASC-CHARD_P_SM_EXC H1:ASC-DSOFT_P_SM_EXC H1:ASC-CSOFT_P_SM_EXC
Monitor channel: H1:ASC-INP1_P_SM_DQ H1:ASC-PRC1_P_SM_DQ H1:ASC-PRC2_P_SM_DQ H1:ASC-MICH_P_SM_DQ H1:ASC-SRC1_P_SM_DQ H1:ASC-SRC2_P_SM_DQ H1:ASC-DHARD_P_SM_DQ H1:ASC-CHARD_P_SM_DQ H1:ASC-DSOFT_P_SM_DQ H1:ASC-CSOFT_P_SM_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ -1.3e-07 + -2.4e-06i 5.1e-09 + 2.0e-08i -1.4e-06 + -8.9e-07i -8.0e-07 + 5.4e-07i -3.9e-07 + 1.1e-06i 1.2e-05 + -7.3e-05i -3.8e-07 + 2.1e-07i 2.7e-08 + -1.4e-08i -3.1e-08 + 2.4e-08i 2.7e-08 + -1.1e-08i
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ -1.3e-03 + 1.7e-02i 5.6e-04 + 1.7e-04i -8.4e-02 + 2.4e-02i 2.6e-03 + -2.4e-03i -4.8e-04 + -1.1e-02i -1.1e+00 + 1.2e+00i 2.1e-04 + -1.6e-04i 2.0e-06 + 5.1e-06i -7.3e-05 + 5.0e-05i -3.6e-05 + 1.7e-05i
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ -2.4e-02 + 1.8e-02i 4.3e-04 + 1.8e-04i -4.5e-02 + -3.7e-03i -6.8e-03 + 4.5e-03i 1.8e-02 + -6.9e-03i -2.5e+00 + -6.7e-01i 3.1e-05 + -1.6e-04i 9.9e-06 + 9.8e-06i 2.3e-04 + -1.7e-04i -3.2e-05 + 2.9e-05i
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 2.6e-03 + 2.3e-03i 6.3e-05 + 1.7e-05i -1.2e-02 + 5.7e-03i 1.4e-03 + -9.0e-04i -2.2e-03 + -5.4e-04i 2.0e-01 + 2.9e-01i 7.7e-07 + 1.0e-05i 5.3e-06 + -5.4e-06i -5.0e-05 + 3.5e-05i -4.7e-07 + -4.5e-07i
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ -6.0e-04 + 1.0e-03i -5.2e-05 + -1.8e-04i 1.9e-02 + 3.9e-03i -4.7e-03 + 3.3e-03i -1.6e-02 + -2.2e-03i -1.1e+00 + 3.1e-01i -2.7e-03 + 1.4e-03i 2.1e-04 + -8.6e-05i -2.4e-04 + 1.4e-04i 1.6e-04 + -6.8e-05i
H1:ASC-AS_B_DC_PIT_OUT_DQ 4.6e-07 + 3.5e-07i -8.0e-08 + -2.1e-08i 8.8e-06 + -5.6e-06i 4.7e-07 + -2.7e-07i 1.4e-06 + -1.9e-06i -2.0e-05 + 8.8e-05i 2.6e-07 + -1.5e-07i -1.5e-08 + 5.5e-09i 2.5e-08 + -1.5e-08i -2.0e-08 + 1.1e-08i
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ -2.5e-03 + -1.3e-02i -1.6e-04 + -6.3e-05i 3.7e-02 + 7.6e-03i -2.2e-03 + 2.2e-03i -3.4e-03 + 2.0e-02i 1.5e+00 + -1.6e+00i -2.3e-04 + 2.1e-04i -2.1e-05 + 8.9e-06i 5.2e-05 + -4.4e-05i 5.2e-05 + -3.5e-05i
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ -1.5e-02 + -1.1e-02i -8.1e-05 + 1.7e-04i 9.2e-03 + -3.1e-02i -6.7e-03 + 6.2e-03i 9.7e-03 + 1.7e-03i -1.1e+00 + -1.3e+00i -1.3e-04 + -1.0e-05i 1.3e-05 + -1.6e-05i 2.2e-04 + -1.6e-04i -8.3e-06 + 1.3e-05i
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ -1.1e-03 + -2.9e-03i -1.0e-04 + -4.8e-05i 1.7e-02 + -5.9e-03i -1.0e-03 + 6.0e-04i 3.8e-04 + -9.6e-05i -1.1e-01 + -1.8e-01i 2.2e-05 + -1.5e-05i -6.4e-06 + 2.2e-06i 3.6e-05 + -2.3e-05i -1.1e-07 + 1.7e-06i
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 3.8e-03 + -1.3e-02i -5.2e-04 + -2.1e-07i 5.2e-02 + -3.8e-02i 3.8e-03 + -2.4e-03i 1.9e-02 + -1.9e-03i 9.7e-01 + -1.3e-01i 2.5e-03 + -1.0e-03i -2.2e-04 + 3.6e-05i 2.1e-04 + -1.2e-04i -1.7e-04 + 5.7e-05i
H1:ASC-AS_C_PIT_OUT_DQ 5.7e-09 + 1.5e-06i 7.5e-08 + 7.7e-08i -1.5e-05 + 1.4e-07i 1.4e-07 + -1.3e-07i -2.9e-06 + 4.2e-08i 1.3e-04 + -4.8e-05i 8.2e-08 + -4.4e-08i -3.7e-09 + 8.6e-10i 6.1e-09 + -3.2e-09i -7.7e-09 + 3.9e-09i
H1:ASC-REFL_A_DC_PIT_OUT_DQ 4.3e-07 + -3.5e-06i -2.6e-08 + -2.8e-08i -1.2e-05 + 1.8e-06i -8.2e-07 + -7.1e-07i -4.7e-08 + 6.2e-08i 9.7e-06 + -5.4e-06i 3.6e-08 + -7.3e-08i 2.2e-08 + -7.7e-08i 1.0e-08 + -5.5e-09i -3.1e-08 + -8.5e-09i
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 4.7e-01 + -1.8e+00i -1.4e-03 + -1.3e-03i 3.9e-01 + -2.2e-02i 1.0e-03 + -1.7e-03i -2.9e-03 + -5.1e-04i 1.0e-01 + 6.3e-01i 2.1e-05 + -7.9e-07i 3.4e-04 + -1.4e-04i -1.6e-05 + 1.0e-05i 8.7e-05 + -1.6e-05i
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 9.2e-02 + -3.7e-01i -1.9e-04 + -1.9e-04i 4.5e-02 + -2.0e-03i 1.6e-04 + -3.7e-04i 1.1e-04 + 1.6e-04i 1.4e-02 + 7.4e-02i 6.2e-06 + -1.3e-05i 9.0e-05 + -4.8e-05i 3.3e-06 + 1.2e-05i 5.8e-06 + -1.1e-05i
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ 4.7e-01 + -1.9e+00i 1.8e-03 + 1.1e-03i -1.4e-01 + 1.6e-02i -2.2e-03 + 1.2e-03i 1.2e-04 + 6.2e-05i -9.4e-02 + -1.6e-01i -2.7e-05 + 2.1e-05i 3.9e-04 + -1.2e-04i -1.0e-05 + -4.0e-05i 3.2e-05 + 6.6e-05i
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ 1.1e-01 + -4.8e-01i 4.9e-04 + 4.0e-04i -6.7e-02 + 5.8e-03i -6.4e-04 + -7.2e-04i 8.1e-04 + 6.9e-04i -4.8e-02 + -1.2e-01i -1.5e-08 + 1.4e-06i 1.0e-04 + -3.4e-05i 9.4e-06 + 8.6e-06i -8.5e-06 + 3.8e-06i
H1:ASC-REFL_B_DC_PIT_OUT_DQ -3.5e-05 + 1.6e-04i -4.4e-08 + -1.3e-08i 7.0e-06 + -1.3e-06i 7.1e-07 + -7.7e-07i -1.1e-07 + -1.5e-07i -2.2e-06 + 1.2e-05i -3.0e-08 + -1.5e-08i -3.8e-08 + -1.0e-09i -5.7e-09 + 1.2e-08i 1.7e-09 + -2.7e-08i
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ -4.0e-01 + 1.6e+00i -4.7e-03 + -3.9e-03i 3.8e-01 + -2.1e-02i 2.1e-03 + -9.4e-04i -3.1e-03 + -1.7e-03i 3.8e-02 + 6.7e-01i -4.4e-05 + 2.4e-05i 3.0e-04 + -1.6e-04i -1.3e-05 + 5.6e-06i 7.0e-05 + -3.5e-05i
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ -1.1e-01 + 4.2e-01i -9.4e-04 + -7.7e-04i 7.0e-02 + -4.2e-03i 4.2e-04 + -1.3e-04i -5.8e-04 + -3.3e-04i 4.7e-03 + 1.2e-01i -1.0e-05 + 1.6e-06i 3.7e-05 + -2.8e-05i 3.2e-06 + -2.4e-07i 1.0e-05 + -1.2e-05i
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ -4.9e-01 + 1.8e+00i -1.9e-03 + -1.6e-03i -2.0e-01 + 1.8e-02i -7.1e-04 + -1.3e-04i 4.3e-03 + 1.2e-03i -1.1e-01 + -2.5e-01i -4.8e-05 + -9.7e-07i 3.6e-04 + -2.0e-04i 2.5e-05 + 2.6e-05i -3.3e-05 + -1.2e-05i
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ -1.7e-01 + 6.3e-01i -5.3e-04 + -3.1e-04i -1.1e-01 + 7.2e-03i -6.9e-04 + 1.3e-03i 2.7e-03 + 1.7e-03i -7.3e-02 + -3.1e-01i -2.1e-05 + 1.7e-05i 1.2e-04 + -6.5e-05i 1.3e-05 + -1.9e-05i -1.7e-05 + 5.4e-06i
H1:ASC-POP_A_PIT_OUT_DQ -4.0e-07 + 1.2e-06i 3.0e-08 + 2.0e-08i -9.8e-07 + 2.0e-07i -9.4e-08 + 1.2e-08i 1.8e-08 + 1.1e-08i -1.9e-06 + 9.5e-09i -2.4e-10 + 2.6e-10i 5.7e-09 + -3.3e-09i 3.2e-10 + -4.3e-10i 3.0e-10 + -3.1e-10i
H1:ASC-POP_B_PIT_OUT_DQ -1.2e-07 + 6.9e-07i 7.8e-08 + 5.8e-08i 6.9e-07 + -1.1e-07i -4.8e-08 + -2.7e-08i -2.0e-08 + 1.2e-09i 1.8e-06 + -1.9e-07i 2.0e-09 + -1.7e-10i -2.4e-09 + 1.3e-09i 1.0e-09 + -1.6e-10i -1.4e-10 + -5.8e-10i
H1:ASC-X_TR_A_PIT_OUT_DQ 3.6e-07 + -9.4e-07i 7.9e-09 + 7.4e-09i -5.6e-07 + 7.2e-09i -1.6e-08 + 9.6e-09i -1.7e-07 + -9.1e-08i -1.2e-05 + 5.4e-06i -1.0e-08 + 5.9e-09i -9.9e-09 + 5.6e-09i -2.7e-10 + 6.2e-10i 3.6e-10 + -1.3e-10i
H1:ASC-X_TR_B_PIT_OUT_DQ 3.4e-07 + -8.7e-07i 7.2e-09 + 6.9e-09i -5.1e-07 + 6.0e-10i -8.5e-09 + 6.8e-09i -1.6e-07 + -8.6e-08i -1.1e-05 + 5.0e-06i -9.6e-09 + 5.1e-09i -9.4e-09 + 5.1e-09i -8.6e-10 + 7.0e-10i -5.3e-11 + 7.8e-11i
H1:ASC-Y_TR_A_PIT_OUT_DQ 2.3e-07 + -5.7e-07i 7.2e-09 + 1.1e-08i -8.6e-07 + -1.4e-07i 1.2e-08 + -6.4e-09i 1.7e-07 + 6.6e-08i 1.3e-05 + -9.4e-06i 1.0e-08 + -5.6e-09i -1.1e-08 + 5.8e-09i 1.2e-09 + -5.7e-10i -1.0e-09 + 5.4e-10i
H1:ASC-Y_TR_B_PIT_OUT_DQ -7.6e-08 + 4.7e-07i 9.1e-10 + 7.9e-10i -1.5e-07 + 4.6e-08i 2.6e-09 + -9.7e-10i 5.5e-08 + 1.4e-08i 1.6e-06 + -1.4e-06i 1.5e-09 + -9.2e-10i -1.5e-09 + 8.4e-10i 1.7e-09 + -8.8e-10i -1.7e-09 + 9.3e-10i
(2015) vajente@caltech.edu
evan.hall@LIGO.ORG - 01:54, Sunday 06 March 2016 (25899)

We also retuned the test mass angle-to-length feedforward in order to recover the sensitvity from 10 to 20 Hz.

There is some excess cattering from 20 to 70 Hz compared to the DARM reference trace (taken before last month's ASC changes), and there is still excess jitter coupling.

robert.ward@LIGO.ORG - 02:07, Sunday 06 March 2016 (25900)
Apparently there is a length limit to alog entries, and two full html'ed sensing matrices exceed it.  Here is the YAW matrix from tonight.



Sensing matrix measurement


Sensing matrix (abs)

Excitation: H1:ASC-INP1_Y_SM_EXC H1:ASC-PRC1_Y_SM_EXC H1:ASC-PRC2_Y_SM_EXC H1:ASC-MICH_Y_SM_EXC H1:ASC-SRC1_Y_SM_EXC H1:ASC-SRC2_Y_SM_EXC H1:ASC-DHARD_Y_SM_EXC H1:ASC-CHARD_Y_SM_EXC H1:ASC-DSOFT_Y_SM_EXC H1:ASC-CSOFT_Y_SM_EXC
Monitor channel: H1:ASC-INP1_Y_SM_DQ H1:ASC-PRC1_Y_SM_DQ H1:ASC-PRC2_Y_SM_DQ H1:ASC-MICH_Y_SM_DQ H1:ASC-SRC1_Y_SM_DQ H1:ASC-SRC2_Y_SM_DQ H1:ASC-DHARD_Y_SM_DQ H1:ASC-CHARD_Y_SM_DQ H1:ASC-DSOFT_Y_SM_DQ H1:ASC-CSOFT_Y_SM_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ 6.1e-06 1.7e-06 2.0e-05 4.3e-06 1.0e-04 2.0e-04 5.1e-07 2.9e-09 9.9e-09 9.3e-09
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 1.1e-02 8.1e-03 9.5e-02 2.2e-02 3.7e-01 7.3e-01 3.0e-04 7.1e-06 1.3e-04 2.2e-05
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ 6.8e-02 2.9e-03 3.4e-02 6.7e-02 9.9e-02 6.2e-01 3.4e-04 1.3e-05 4.2e-04 9.7e-06
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ 1.3e-02 3.7e-04 9.3e-03 1.2e-02 3.3e-02 1.8e-01 3.6e-05 1.4e-05 8.8e-05 1.0e-05
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ 3.3e-02 5.2e-03 6.7e-02 2.7e-02 3.4e-01 6.3e-01 3.6e-03 4.0e-05 8.3e-05 4.4e-05
H1:ASC-AS_B_DC_YAW_OUT_DQ 6.6e-06 1.0e-06 1.3e-05 1.9e-06 8.9e-05 1.5e-04 3.5e-07 1.7e-09 9.8e-09 1.3e-08
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ 2.8e-02 1.2e-02 1.3e-01 1.2e-02 6.6e-01 1.1e+00 2.7e-04 2.6e-05 8.7e-05 4.6e-05
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 6.6e-02 7.6e-04 2.2e-02 5.9e-02 2.8e-02 6.7e-01 3.2e-04 3.6e-06 3.8e-04 1.1e-05
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 9.5e-03 3.9e-04 8.2e-03 8.3e-03 8.7e-03 1.4e-01 1.2e-04 5.4e-06 6.8e-05 4.3e-06
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ 3.8e-02 2.8e-03 4.1e-02 1.7e-02 3.3e-01 5.0e-01 3.1e-03 5.0e-05 9.5e-05 3.4e-05
H1:ASC-AS_C_YAW_OUT_DQ 1.9e-06 4.6e-07 6.1e-06 2.0e-07 2.0e-05 6.5e-05 7.7e-08 2.7e-09 2.4e-09 5.9e-09
H1:ASC-REFL_A_DC_YAW_OUT_DQ 1.0e-05 2.9e-07 7.6e-06 4.5e-06 7.9e-07 3.3e-05 1.6e-08 6.9e-08 5.8e-08 2.8e-08
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ 2.8e+00 6.8e-03 2.5e-01 2.3e-02 1.4e-02 6.5e-01 5.1e-05 3.7e-04 3.4e-05 9.8e-05
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ 5.8e-01 2.1e-04 2.4e-02 3.2e-03 1.7e-03 4.9e-02 5.8e-06 1.1e-04 8.4e-06 9.4e-06
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ 3.1e+00 2.0e-02 1.3e-01 8.6e-03 5.4e-03 5.4e-01 3.6e-05 4.8e-04 4.4e-05 3.1e-06
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ 7.2e-01 5.4e-03 3.9e-02 4.6e-03 8.1e-03 1.1e-01 1.5e-05 1.2e-04 2.5e-05 4.0e-06
H1:ASC-REFL_B_DC_YAW_OUT_DQ 2.0e-04 6.7e-07 6.5e-06 1.7e-06 1.1e-06 3.6e-05 1.2e-08 4.0e-08 1.3e-08 5.8e-09
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 1.9e+00 3.8e-02 2.7e-01 1.9e-02 1.4e-02 7.8e-01 3.4e-05 4.5e-04 4.6e-05 9.2e-05
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 5.5e-01 7.6e-03 4.6e-02 3.0e-03 2.3e-03 1.3e-01 6.7e-06 6.7e-05 8.6e-06 1.6e-05
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ 2.3e+00 1.0e-02 1.8e-01 1.2e-02 3.2e-02 6.6e-01 3.3e-05 5.8e-04 9.9e-06 4.0e-05
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ 7.5e-01 1.1e-03 9.2e-02 1.4e-02 1.8e-02 2.5e-01 4.4e-05 1.9e-04 4.2e-05 2.5e-05
H1:ASC-POP_A_YAW_OUT_DQ 5.3e-07 5.3e-07 1.8e-06 1.0e-07 1.9e-07 7.6e-06 2.5e-10 9.9e-09 4.4e-10 4.4e-10
H1:ASC-POP_B_YAW_OUT_DQ 1.4e-06 4.0e-07 6.4e-07 2.6e-08 1.2e-07 3.6e-06 2.8e-10 7.5e-09 3.1e-10 4.2e-10
H1:ASC-X_TR_A_YAW_OUT_DQ 1.3e-06 5.9e-08 3.4e-07 2.7e-08 1.3e-06 6.1e-06 1.5e-08 1.6e-08 4.3e-10 1.8e-11
H1:ASC-X_TR_B_YAW_OUT_DQ 1.1e-06 5.2e-08 3.1e-07 3.1e-08 1.2e-06 6.6e-06 1.4e-08 1.4e-08 1.8e-09 1.5e-09
H1:ASC-Y_TR_A_YAW_OUT_DQ 1.3e-06 6.4e-08 3.1e-07 4.6e-08 1.5e-06 3.5e-06 1.6e-08 1.6e-08 3.7e-10 2.9e-10
H1:ASC-Y_TR_B_YAW_OUT_DQ 2.4e-07 2.0e-08 1.6e-07 1.9e-08 7.9e-07 6.8e-06 6.2e-09 6.2e-09 1.8e-09 1.9e-09

Coherence matrix

Excitation: H1:ASC-INP1_Y_SM_EXC H1:ASC-PRC1_Y_SM_EXC H1:ASC-PRC2_Y_SM_EXC H1:ASC-MICH_Y_SM_EXC H1:ASC-SRC1_Y_SM_EXC H1:ASC-SRC2_Y_SM_EXC H1:ASC-DHARD_Y_SM_EXC H1:ASC-CHARD_Y_SM_EXC H1:ASC-DSOFT_Y_SM_EXC H1:ASC-CSOFT_Y_SM_EXC
Monitor channel: H1:ASC-INP1_Y_SM_DQ H1:ASC-PRC1_Y_SM_DQ H1:ASC-PRC2_Y_SM_DQ H1:ASC-MICH_Y_SM_DQ H1:ASC-SRC1_Y_SM_DQ H1:ASC-SRC2_Y_SM_DQ H1:ASC-DHARD_Y_SM_DQ H1:ASC-CHARD_Y_SM_DQ H1:ASC-DSOFT_Y_SM_DQ H1:ASC-CSOFT_Y_SM_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ 0.04 0.57 0.90 0.81 1.00 0.43 1.00 0.04 0.34 0.46
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 0.01 0.56 0.92 0.97 1.00 0.27 1.00 0.07 0.98 0.71
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ 0.04 0.04 0.18 1.00 0.82 0.03 1.00 0.18 0.99 0.14
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ 0.04 0.02 0.31 0.98 0.94 0.08 0.95 0.59 0.98 0.50
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ 0.09 0.54 0.88 0.97 1.00 0.39 1.00 0.43 0.86 0.63
H1:ASC-AS_B_DC_YAW_OUT_DQ 0.06 0.36 0.81 0.52 1.00 0.30 1.00 0.01 0.33 0.57
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ 0.02 0.52 0.90 0.89 0.99 0.31 1.00 0.35 0.90 0.85
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 0.05 0.00 0.10 0.99 0.36 0.05 1.00 0.01 0.99 0.22
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 0.05 0.04 0.40 1.00 0.69 0.08 1.00 0.58 1.00 0.65
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ 0.10 0.19 0.67 0.98 1.00 0.22 1.00 0.68 0.94 0.61
H1:ASC-AS_C_YAW_OUT_DQ 0.12 0.61 0.94 0.53 1.00 0.95 1.00 0.66 0.64 0.95
H1:ASC-REFL_A_DC_YAW_OUT_DQ 0.64 0.43 0.96 0.03 0.57 0.24 0.05 0.14 0.10 0.07
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ 1.00 0.44 0.97 0.66 0.37 0.14 0.44 0.89 0.09 0.46
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ 1.00 0.06 0.96 0.41 0.41 0.07 0.15 0.92 0.09 0.10
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ 1.00 0.96 0.97 0.16 0.19 0.30 0.18 0.89 0.08 0.00
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ 1.00 0.92 0.96 0.29 0.80 0.14 0.31 0.85 0.24 0.01
H1:ASC-REFL_B_DC_YAW_OUT_DQ 1.00 0.83 0.94 0.02 0.72 0.28 0.07 0.09 0.02 0.01
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 0.99 0.95 0.97 0.87 0.32 0.19 0.58 0.98 0.40 0.76
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 1.00 0.96 0.97 0.50 0.31 0.18 0.28 0.85 0.13 0.43
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ 1.00 0.78 0.97 0.65 0.86 0.29 0.55 0.98 0.02 0.34
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ 0.99 0.12 0.97 0.93 0.82 0.13 0.93 0.98 0.73 0.55
H1:ASC-POP_A_YAW_OUT_DQ 0.15 0.99 0.97 0.14 0.67 0.34 0.05 0.95 0.05 0.07
H1:ASC-POP_B_YAW_OUT_DQ 0.87 0.99 0.95 0.01 0.80 0.26 0.06 0.89 0.01 0.06
H1:ASC-X_TR_A_YAW_OUT_DQ 0.61 0.48 0.60 0.07 0.99 0.21 1.00 1.00 0.24 0.00
H1:ASC-X_TR_B_YAW_OUT_DQ 0.53 0.45 0.58 0.37 0.99 0.29 1.00 1.00 0.97 0.98
H1:ASC-Y_TR_A_YAW_OUT_DQ 0.70 0.70 0.69 0.78 0.99 0.18 1.00 1.00 0.86 0.83
H1:ASC-Y_TR_B_YAW_OUT_DQ 0.02 0.04 0.12 0.25 0.94 0.15 1.00 1.00 0.99 0.99

Sensing matrix (complex)

Excitation: H1:ASC-INP1_Y_SM_EXC H1:ASC-PRC1_Y_SM_EXC H1:ASC-PRC2_Y_SM_EXC H1:ASC-MICH_Y_SM_EXC H1:ASC-SRC1_Y_SM_EXC H1:ASC-SRC2_Y_SM_EXC H1:ASC-DHARD_Y_SM_EXC H1:ASC-CHARD_Y_SM_EXC H1:ASC-DSOFT_Y_SM_EXC H1:ASC-CSOFT_Y_SM_EXC
Monitor channel: H1:ASC-INP1_Y_SM_DQ H1:ASC-PRC1_Y_SM_DQ H1:ASC-PRC2_Y_SM_DQ H1:ASC-MICH_Y_SM_DQ H1:ASC-SRC1_Y_SM_DQ H1:ASC-SRC2_Y_SM_DQ H1:ASC-DHARD_Y_SM_DQ H1:ASC-CHARD_Y_SM_DQ H1:ASC-DSOFT_Y_SM_DQ H1:ASC-CSOFT_Y_SM_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ -4.7e-06 + 3.8e-06i 1.0e-06 + 1.3e-06i 5.6e-06 + 2.0e-05i -3.2e-06 + 2.8e-06i -8.2e-05 + 5.6e-05i 1.3e-04 + 1.4e-04i -4.4e-07 + 2.5e-07i 2.9e-09 + 2.1e-10i 7.8e-09 + -6.1e-09i -8.5e-09 + 3.7e-09i
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 1.1e-02 + 4.4e-03i -6.0e-03 + -5.4e-03i -5.6e-02 + -7.6e-02i 1.8e-02 + -1.3e-02i 3.6e-01 + -1.1e-01i -3.6e-01 + -6.3e-01i 2.4e-04 + -1.8e-04i 6.4e-06 + -3.2e-06i 1.1e-04 + -6.7e-05i 2.2e-05 + -5.5e-06i
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ -1.3e-03 + -6.8e-02i -2.9e-03 + -5.6e-04i -4.0e-03 + -3.4e-02i -5.4e-02 + 3.8e-02i 9.5e-02 + -3.0e-02i 2.3e-01 + -5.7e-01i -2.9e-04 + 1.8e-04i 1.2e-05 + -3.4e-06i -3.4e-04 + 2.4e-04i 7.9e-06 + -5.6e-06i
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ -3.0e-03 + 1.2e-02i 1.9e-04 + 3.2e-04i -4.8e-03 + 8.0e-03i 1.0e-02 + -6.4e-03i -3.2e-02 + 9.8e-03i -1.0e-01 + 1.5e-01i -1.0e-05 + 3.5e-05i -1.3e-05 + -4.9e-06i 7.7e-05 + -4.1e-05i -1.0e-05 + 1.2e-06i
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ -2.5e-02 + 2.2e-02i 3.4e-03 + 3.9e-03i 2.5e-02 + 6.2e-02i -2.2e-02 + 1.6e-02i -2.6e-01 + 2.2e-01i 5.6e-01 + 2.9e-01i -3.2e-03 + 1.7e-03i 3.7e-05 + -1.6e-05i 6.8e-05 + -4.8e-05i -3.8e-05 + 2.2e-05i
H1:ASC-AS_B_DC_YAW_OUT_DQ 6.6e-06 + 1.4e-07i -4.3e-07 + -9.4e-07i 5.4e-07 + -1.3e-05i 1.4e-06 + -1.3e-06i 8.0e-05 + -4.0e-05i -8.9e-05 + -1.2e-04i 3.0e-07 + -1.8e-07i -7.4e-10 + -1.5e-09i -7.8e-09 + 6.0e-09i 9.8e-09 + -7.8e-09i
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ -2.4e-02 + -1.5e-02i 8.7e-03 + 7.8e-03i 7.4e-02 + 1.1e-01i -1.0e-02 + 6.9e-03i -6.4e-01 + 1.2e-01i 5.6e-01 + 9.8e-01i -2.0e-04 + 1.9e-04i -2.4e-05 + 9.4e-06i -7.5e-05 + 4.3e-05i -4.0e-05 + 2.4e-05i
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 2.0e-03 + -6.6e-02i -6.4e-04 + 4.2e-04i 1.7e-02 + -1.3e-02i -4.8e-02 + 3.4e-02i -6.5e-03 + -2.7e-02i 3.8e-01 + -5.5e-01i -2.7e-04 + 1.8e-04i 7.9e-07 + -3.6e-06i -3.2e-04 + 2.0e-04i 1.0e-05 + -3.0e-06i
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 3.5e-03 + -8.8e-03i 3.5e-04 + 1.8e-04i 8.2e-03 + -3.4e-04i -7.0e-03 + 4.6e-03i -7.5e-04 + -8.6e-03i 1.2e-01 + -6.7e-02i 1.1e-04 + -5.6e-05i 5.4e-06 + -1.0e-07i -5.9e-05 + 3.3e-05i 4.3e-06 + 2.9e-07i
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ 3.8e-02 + -8.7e-04i 3.4e-04 + -2.7e-03i 1.8e-02 + -3.7e-02i 1.4e-02 + -9.7e-03i 2.8e-01 + -1.7e-01i -4.2e-01 + -2.7e-01i 2.8e-03 + -1.3e-03i -4.9e-05 + -1.0e-05i -5.8e-05 + 7.5e-05i 1.3e-05 + -3.2e-05i
H1:ASC-AS_C_YAW_OUT_DQ -1.1e-06 + 1.6e-06i 3.3e-07 + 3.1e-07i 3.1e-06 + 5.3e-06i -1.5e-07 + 1.3e-07i -2.8e-06 + 1.9e-05i 6.1e-05 + -2.2e-05i -6.2e-08 + 4.5e-08i -2.7e-09 + -1.1e-10i 2.4e-09 + 5.2e-11i -5.4e-09 + 2.4e-09i
H1:ASC-REFL_A_DC_YAW_OUT_DQ -1.8e-06 + 1.0e-05i 2.9e-07 + -3.7e-09i -7.5e-06 + -9.2e-07i 2.9e-07 + 4.5e-06i 7.7e-07 + 1.7e-07i -1.7e-05 + 2.9e-05i -1.2e-08 + 1.1e-08i 6.9e-08 + -2.1e-09i 4.0e-08 + 4.3e-08i 2.7e-08 + 7.7e-09i
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ -3.5e-01 + 2.8e+00i 6.8e-03 + 6.3e-04i 2.4e-01 + 3.6e-02i 2.2e-02 + -6.3e-03i -1.4e-02 + 4.9e-03i 3.9e-01 + -5.1e-01i 4.5e-05 + -2.4e-05i 3.4e-04 + -1.5e-04i 3.4e-05 + 2.0e-06i -9.0e-05 + 3.9e-05i
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ -7.6e-02 + 5.8e-01i -5.5e-06 + 2.1e-04i 2.4e-02 + 3.7e-03i 3.2e-03 + -3.9e-04i -6.3e-04 + 1.6e-03i 3.6e-02 + -3.3e-02i 5.8e-06 + 4.7e-07i 1.0e-04 + -4.5e-05i 7.8e-06 + 3.3e-06i -8.5e-06 + 3.9e-06i
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ -4.6e-01 + 3.1e+00i -2.0e-02 + 2.3e-03i -1.3e-01 + -1.8e-02i -3.6e-03 + 7.8e-03i 5.3e-03 + 1.2e-03i -3.3e-01 + 4.3e-01i -2.0e-05 + 3.0e-05i 4.4e-04 + -2.0e-04i -1.5e-05 + 4.1e-05i -1.7e-06 + -2.6e-06i
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ -9.9e-02 + 7.2e-01i -5.4e-03 + 7.3e-04i -3.9e-02 + -6.0e-03i 2.3e-03 + 4.0e-03i 8.1e-03 + 3.3e-04i -7.3e-02 + 8.8e-02i -1.1e-05 + 1.1e-05i 1.1e-04 + -4.1e-05i -4.4e-06 + 2.5e-05i -3.8e-06 + 1.2e-06i
H1:ASC-REFL_B_DC_YAW_OUT_DQ 2.4e-05 + -2.0e-04i 6.7e-07 + -7.6e-08i 6.5e-06 + 7.4e-07i -1.1e-06 + -1.2e-06i -8.5e-07 + -6.5e-07i 2.1e-05 + -3.0e-05i 5.2e-09 + -1.1e-08i -3.4e-08 + 2.0e-08i -1.2e-08 + -4.6e-09i 9.1e-10 + 5.7e-09i
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 3.1e-01 + -1.9e+00i 3.8e-02 + -3.2e-03i 2.7e-01 + 3.9e-02i 1.6e-02 + -1.0e-02i -1.4e-02 + -1.1e-03i 4.3e-01 + -6.6e-01i 2.4e-05 + -2.4e-05i 4.0e-04 + -1.9e-04i 2.9e-05 + -3.6e-05i -8.1e-05 + 4.3e-05i
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 8.5e-02 + -5.4e-01i 7.6e-03 + -6.9e-04i 4.5e-02 + 6.7e-03i 2.3e-03 + -1.9e-03i -2.1e-03 + 1.1e-03i 8.8e-02 + -9.8e-02i 4.8e-06 + -4.6e-06i 6.1e-05 + -2.6e-05i 3.3e-06 + -7.9e-06i -1.5e-05 + 7.0e-06i
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ 3.1e-01 + -2.3e+00i 9.8e-03 + -1.9e-03i -1.8e-01 + -2.6e-02i -1.1e-02 + 4.4e-03i 2.8e-02 + 1.6e-02i -3.8e-01 + 5.4e-01i -2.7e-05 + 1.9e-05i 5.2e-04 + -2.6e-04i -4.4e-06 + -8.9e-06i 3.7e-05 + -1.4e-05i
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ 9.5e-02 + -7.4e-01i 8.5e-04 + -7.5e-04i -9.0e-02 + -1.5e-02i -1.3e-02 + 5.8e-03i 1.7e-02 + 6.6e-03i -1.5e-01 + 2.0e-01i -2.5e-05 + 3.6e-05i 1.7e-04 + -8.2e-05i -3.4e-05 + 2.5e-05i 2.4e-05 + -7.3e-06i
H1:ASC-POP_A_YAW_OUT_DQ -1.3e-07 + -5.1e-07i -5.3e-07 + 8.0e-08i -1.8e-06 + -1.9e-07i -7.1e-08 + 7.3e-08i 1.8e-07 + 4.7e-08i -4.6e-06 + 6.1e-06i -2.4e-10 + 7.2e-11i 8.7e-09 + -4.7e-09i -3.0e-10 + 3.2e-10i 4.0e-10 + -1.8e-10i
H1:ASC-POP_B_YAW_OUT_DQ 1.6e-07 + -1.4e-06i -4.0e-07 + 6.0e-08i 6.4e-07 + 6.8e-08i 2.5e-08 + 4.0e-09i -1.1e-07 + -6.3e-08i 1.7e-06 + -3.1e-06i 1.9e-10 + -2.0e-10i -6.5e-09 + 3.8e-09i -2.9e-10 + 1.2e-10i -3.9e-10 + -1.6e-10i
H1:ASC-X_TR_A_YAW_OUT_DQ 3.6e-10 + -1.3e-06i 3.9e-08 + -4.3e-08i -1.3e-08 + -3.4e-07i -2.4e-08 + 1.2e-08i 1.2e-06 + -4.2e-07i 1.8e-07 + -6.1e-06i -1.3e-08 + 7.6e-09i -1.4e-08 + 7.7e-09i 3.6e-10 + -2.4e-10i 1.5e-11 + -1.0e-11i
H1:ASC-X_TR_B_YAW_OUT_DQ 2.9e-09 + -1.1e-06i 3.4e-08 + -3.9e-08i -1.7e-08 + -3.1e-07i -2.2e-08 + 2.1e-08i 1.1e-06 + -3.7e-07i 1.1e-06 + -6.5e-06i -1.2e-08 + 6.5e-09i -1.2e-08 + 6.7e-09i 1.5e-09 + -8.9e-10i 1.3e-09 + -7.2e-10i
H1:ASC-Y_TR_A_YAW_OUT_DQ -5.0e-08 + 1.3e-06i -6.4e-08 + -6.8e-09i 5.3e-08 + -3.0e-07i -3.6e-08 + 2.8e-08i 1.5e-06 + -1.6e-07i -4.7e-07 + -3.5e-06i -1.4e-08 + 7.5e-09i 1.4e-08 + -7.6e-09i 3.1e-10 + -1.9e-10i -2.4e-10 + 1.6e-10i
H1:ASC-Y_TR_B_YAW_OUT_DQ 1.3e-07 + -2.0e-07i -1.9e-08 + -1.4e-09i 1.1e-07 + -1.2e-07i -1.5e-08 + 1.2e-08i 7.8e-07 + -3.2e-08i 4.3e-06 + -5.2e-06i -5.4e-09 + 3.0e-09i 5.4e-09 + -3.0e-09i 1.5e-09 + -9.0e-10i -1.7e-09 + 9.7e-10i
(2015) vajente@caltech.edu
H1 ISC (ISC)
matthew.evans@LIGO.ORG - posted 18:28, Wednesday 02 March 2016 - last comment - 10:27, Monday 07 March 2016(25847)
DARM noise fluctuation vs. LVEA Temperature

Plotting the cross-correlated DARM noise (band 5) and LEVA temperature on the same plot doesn't show any obvious relationship.  The .fig is included in case someone has a good idea of how to use this data.

Images attached to this report
Non-image files attached to this report
Comments related to this report
lisa.barsotti@LIGO.ORG - 19:23, Wednesday 02 March 2016 (25848)
This analysis has been inspired by the recent investigations on the  L1 noise , that shows some correlation of DARM variations vs LVEA temperature.

By superimposing the current best L1 curve and the best H1 curve from O1 (see plot), one can see that the noise in the L1 bucket seems to have more "scattering looking" peaks (which can be modulated by temperature-induced alignment variations), while the H1 noise less so. 

The noise at high frequency is notably lower in L1, mostly due to the higher cavity pole frequency. 

Non-image files attached to this comment
kiwamu.izumi@LIGO.ORG - 14:50, Friday 04 March 2016 (25882)DetChar

I have extended Matt's previous analysis to the entire O1. In addition, I added another interesting channel, the vertical sensor of the top stage of ITMY. Here is the result.

I went through trend of some interesting channels where I was looking for signals showing similar variation to the band limited rms of the cross spectra. I came across ITMs' top stage vertical monitors and found them showing two relatively big bumps (actually dips in the raw signals) which seemingly match the ones in the band limited rms on Dec 2nd and Dec 29th. However, even through they look like showing a good agreement in the last half of the O1 period, the first half does not show an obvious correlation. Does this mean that the modulation mechanism of the noise level changed in the middle of the run and somehow noise level became sensitive to vertical displacement of ITMs or in-chamber temperature ?

Images attached to this comment
Non-image files attached to this comment
kiwamu.izumi@LIGO.ORG - 10:27, Monday 07 March 2016 (25910)

For completeness, I have looked at other vertical monitors. Here is the result. They all show qualitatively the same behavior more or less. The fig file can be found on a server.


 

Images attached to this comment
Displaying reports 58161-58180 of 83394.Go to page Start 2905 2906 2907 2908 2909 2910 2911 2912 2913 End