Displaying reports 69001-69020 of 85669.Go to page Start 3447 3448 3449 3450 3451 3452 3453 3454 3455 End
Reports until 10:36, Saturday 07 March 2015
H1 CDS (DAQ)
david.barker@LIGO.ORG - posted 10:36, Saturday 07 March 2015 (17128)
CDS model and DAQ restart report, Friday 6th March 2015

model restarts logged for Fri 06/Mar/2015
2015_03_06 02:14 h1fw1
2015_03_06 15:43 h1fw0

both unexpected restarts.

H1 ISC (ISC)
gabriele.vajente@LIGO.ORG - posted 03:54, Saturday 07 March 2015 (17127)
Full lock ASC sensing matrix pitch

Sensing matrix (abs)

Excitation: H1:ASC-INP1_P_EXC H1:ASC-PRC1_P_EXC H1:ASC-PRC2_P_EXC H1:ASC-MICH_P_EXC H1:ASC-SRC1_P_EXC H1:ASC-SRC2_P_EXC H1:ASC-DHARD_P_EXC H1:ASC-CHARD_P_EXC
Monitor channel: H1:ASC-INP1_P_OUT_DQ H1:ASC-PRC1_P_OUT_DQ H1:ASC-PRC2_P_OUT_DQ H1:ASC-MICH_P_OUT_DQ H1:ASC-SRC1_P_OUT_DQ H1:ASC-SRC2_P_OUT_DQ H1:ASC-DHARD_P_OUT_DQ H1:ASC-CHARD_P_OUT_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ 3.083490e-07 1.144743e-06 2.919830e-06 4.942637e-07 1.452438e-06 2.619617e-06 1.325017e-07 3.567395e-08
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ 1.009171e-02 4.936903e-02 2.357671e-01 3.996264e-02 1.540003e-02 6.004689e-02 4.894228e-04 1.844368e-04
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ 4.073150e-03 2.588899e-02 8.040688e-02 1.807913e-02 4.705937e-03 2.425972e-02 1.510983e-04 8.148122e-05
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 1.111965e-03 3.486822e-03 1.294388e-02 3.245946e-03 3.223794e-03 6.192785e-03 6.431043e-04 6.513617e-04
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ 2.046050e-03 1.014683e-02 2.494759e-02 3.592855e-03 1.044098e-02 1.778291e-02 1.953485e-03 1.180374e-03
H1:ASC-AS_B_DC_PIT_OUT_DQ 9.115051e-08 2.782044e-07 2.338714e-06 1.529549e-07 1.384706e-06 1.389544e-06 1.099927e-07 3.606211e-08
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ 4.145453e-03 2.041296e-02 8.112171e-02 2.039253e-02 1.801183e-02 4.186856e-02 4.951289e-04 1.923841e-04
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ 1.162469e-02 3.336087e-02 1.910910e-01 2.897883e-02 8.101623e-03 5.219472e-03 1.961022e-04 7.268414e-05
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ 5.523491e-04 8.440912e-04 7.427538e-03 2.384657e-03 2.499549e-03 2.408958e-03 3.925227e-04 1.521333e-04
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 1.621527e-03 1.015638e-03 1.189498e-02 1.894740e-03 9.196098e-03 5.479858e-03 1.033636e-03 2.427369e-03
H1:ASC-REFL_A_DC_PIT_OUT_DQ 3.560505e-05 3.297917e-06 1.537390e-06 7.235049e-08 6.936441e-08 8.141532e-08 1.268757e-08 1.048516e-07
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 4.920824e-01 5.936572e-02 1.752261e-01 4.753618e-03 8.913130e-04 8.708666e-04 6.157735e-05 4.717546e-04
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 3.291911e-02 8.592700e-03 3.766853e-02 7.920284e-04 1.131240e-04 7.150635e-04 2.417645e-05 1.533514e-04
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ 1.718190e-01 6.676713e-03 4.784160e-02 1.643632e-03 9.462730e-04 7.296060e-03 8.634951e-06 3.089538e-04
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ 4.743743e-02 5.443385e-03 4.440532e-02 4.378829e-03 8.734244e-04 2.998522e-03 2.216412e-05 9.758485e-05
H1:ASC-REFL_B_DC_PIT_OUT_DQ 3.630905e-05 1.878011e-06 2.113448e-06 8.611104e-08 2.668102e-08 3.471210e-08 5.648343e-09 4.677509e-09
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ 4.488839e-01 1.740580e-02 1.126740e-01 2.089294e-03 5.812146e-04 2.218312e-03 4.747062e-05 2.814405e-04
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ 1.692003e-01 6.649856e-03 2.787750e-02 3.839017e-04 1.763532e-04 4.591376e-04 3.989076e-06 9.892931e-05
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ 1.776931e-01 2.537226e-02 3.602318e-02 2.016099e-03 1.856591e-04 3.599292e-03 2.809717e-05 3.280684e-04
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ 1.904613e-02 5.612985e-03 7.555751e-03 2.555992e-03 8.964460e-04 2.874098e-03 7.123919e-06 8.146436e-05
H1:ASC-POP_A_PIT_OUT_DQ 1.176313e-07 4.458330e-07 8.274772e-07 2.594225e-08 7.359085e-09 4.204759e-09 2.893286e-10 5.019974e-09
H1:ASC-POP_B_PIT_OUT_DQ 1.462446e-07 5.225394e-07 2.747699e-07 8.759590e-09 3.629195e-09 2.620867e-09 3.364314e-10 3.340155e-09

Coherence matrix

Excitation: H1:ASC-INP1_P_EXC H1:ASC-PRC1_P_EXC H1:ASC-PRC2_P_EXC H1:ASC-MICH_P_EXC H1:ASC-SRC1_P_EXC H1:ASC-SRC2_P_EXC H1:ASC-DHARD_P_EXC H1:ASC-CHARD_P_EXC
Monitor channel: H1:ASC-INP1_P_OUT_DQ H1:ASC-PRC1_P_OUT_DQ H1:ASC-PRC2_P_OUT_DQ H1:ASC-MICH_P_OUT_DQ H1:ASC-SRC1_P_OUT_DQ H1:ASC-SRC2_P_OUT_DQ H1:ASC-DHARD_P_OUT_DQ H1:ASC-CHARD_P_OUT_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ 0.842596 0.977886 0.965931 0.975595 0.999108 0.992553 0.994846 0.349682
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ 0.946523 0.992638 0.992299 0.999337 0.983182 0.994849 0.985893 0.467179
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ 0.885832 0.989814 0.991665 0.998852 0.977769 0.987006 0.972644 0.285157
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 0.914833 0.968299 0.963553 0.993281 0.997222 0.993937 0.997682 0.886040
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ 0.859677 0.970701 0.954542 0.960983 0.998429 0.993037 0.998935 0.751817
H1:ASC-AS_B_DC_PIT_OUT_DQ 0.321544 0.884705 0.967308 0.908797 0.999596 0.994055 0.996648 0.451122
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ 0.750983 0.992819 0.973803 0.994226 0.995921 0.994185 0.993811 0.395568
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ 0.945920 0.981826 0.988143 0.995395 0.943165 0.593777 0.951807 0.215149
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ 0.886304 0.751647 0.923617 0.988048 0.996060 0.982425 0.997854 0.393172
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 0.850567 0.212435 0.845161 0.903738 0.997967 0.938270 0.996016 0.952700
H1:ASC-REFL_A_DC_PIT_OUT_DQ 0.985522 0.822630 0.079597 0.326208 0.024571 0.051059 0.043676 0.096333
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 0.999495 0.745440 0.991509 0.581084 0.216329 0.044272 0.086911 0.249591
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 0.915875 0.637567 0.970091 0.489305 0.031496 0.372920 0.097872 0.179574
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ 0.998537 0.428961 0.973404 0.608736 0.697598 0.873857 0.015387 0.543645
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ 0.980092 0.918974 0.976004 0.930231 0.797800 0.764369 0.630891 0.752446
H1:ASC-REFL_B_DC_PIT_OUT_DQ 0.997478 0.715646 0.387607 0.343336 0.010332 0.010410 0.039738 0.001099
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ 0.999790 0.624349 0.996868 0.675393 0.558339 0.823706 0.479562 0.665490
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ 0.999215 0.729526 0.983464 0.290106 0.273340 0.337866 0.021754 0.361151
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ 0.999092 0.964592 0.989265 0.898348 0.206883 0.811351 0.473603 0.878144
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ 0.993238 0.938917 0.677027 0.730587 0.914857 0.844002 0.242257 0.685366
H1:ASC-POP_A_PIT_OUT_DQ 0.992082 0.999784 0.999253 0.999186 0.909857 0.668808 0.581516 0.971856
H1:ASC-POP_B_PIT_OUT_DQ 0.991770 0.999599 0.983120 0.992675 0.627418 0.610812 0.489341 0.855274

Sensing matrix (complex)

Excitation: H1:ASC-INP1_P_EXC H1:ASC-PRC1_P_EXC H1:ASC-PRC2_P_EXC H1:ASC-MICH_P_EXC H1:ASC-SRC1_P_EXC H1:ASC-SRC2_P_EXC H1:ASC-DHARD_P_EXC H1:ASC-CHARD_P_EXC
Monitor channel: H1:ASC-INP1_P_OUT_DQ H1:ASC-PRC1_P_OUT_DQ H1:ASC-PRC2_P_OUT_DQ H1:ASC-MICH_P_OUT_DQ H1:ASC-SRC1_P_OUT_DQ H1:ASC-SRC2_P_OUT_DQ H1:ASC-DHARD_P_OUT_DQ H1:ASC-CHARD_P_OUT_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ -3.024548e-07 + -6.000168e-08i -1.142106e-06 + 7.764893e-08i -2.763255e-06 + -9.433063e-07i -2.888889e-07 + 4.010484e-07i 1.407714e-06 + -3.576591e-07i 2.608959e-06 + -2.360641e-07i -1.216899e-07 + 5.242402e-08i -1.672444e-08 + -3.151069e-08i
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ -6.004168e-03 + -8.111265e-03i -4.923470e-02 + 3.639388e-03i -1.991268e-01 + -1.262324e-01i -2.810927e-02 + 2.840566e-02i -1.378242e-02 + -6.870641e-03i -5.921334e-02 + -9.970425e-03i 3.695230e-04 + 3.209166e-04i -8.124790e-05 + 1.655769e-04i
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ 6.136053e-04 + -4.026666e-03i -1.724836e-02 + -1.930633e-02i 2.960292e-02 + -7.475917e-02i -1.499848e-02 + 1.009458e-02i -4.119934e-03 + -2.274199e-03i 2.335446e-02 + 6.565284e-03i -1.510477e-04 + 3.908513e-06i 7.559458e-05 + -3.040802e-05i
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 5.952670e-04 + 9.392147e-04i 3.249254e-03 + -1.265020e-03i 1.150423e-02 + 5.932689e-03i 2.155553e-03 + -2.426883e-03i -2.452404e-03 + 2.092501e-03i -5.675709e-03 + 2.477278e-03i 5.419130e-04 + -3.462853e-04i -1.433052e-04 + 6.354020e-04i
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ -1.909604e-03 + -7.346653e-04i -9.239894e-03 + 4.193151e-03i -2.471804e-02 + 3.376491e-03i -1.297035e-03 + 3.350568e-03i 8.994345e-03 + -5.302441e-03i 1.703536e-02 + -5.101816e-03i -1.703017e-03 + 9.569935e-04i 1.017517e-04 + -1.175981e-03i
H1:ASC-AS_B_DC_PIT_OUT_DQ -9.033187e-08 + -1.218885e-08i 1.049920e-07 + 2.576322e-07i -2.320654e-06 + 2.900827e-07i 1.376721e-07 + -6.664548e-08i -1.355705e-06 + 2.819143e-07i 1.373512e-06 + 2.104725e-07i 1.025743e-07 + -3.971032e-08i 3.583744e-08 + -4.019185e-09i
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ -1.019495e-03 + -4.018135e-03i 1.447408e-02 + -1.439410e-02i 5.455060e-02 + -6.004135e-02i -1.360423e-02 + 1.519145e-02i 1.797817e-02 + 1.100761e-03i -4.074184e-02 + -9.647727e-03i -4.660963e-04 + -1.670536e-04i -1.916837e-04 + -1.640179e-05i
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ -1.014247e-02 + -5.680121e-03i -3.240162e-02 + 7.942456e-03i -1.705241e-01 + -8.623975e-02i -1.867226e-02 + 2.216121e-02i -6.993700e-03 + -4.089553e-03i -5.200696e-03 + 4.423131e-04i 1.279625e-04 + 1.485991e-04i 4.128152e-05 + 5.982324e-05i
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ -2.910261e-04 + -4.694606e-04i -8.429875e-04 + 4.315221e-05i -2.535273e-03 + -6.981454e-03i -1.826117e-03 + 1.533586e-03i 2.171146e-03 + -1.238495e-03i 1.097244e-04 + -2.406458e-03i -3.492468e-04 + 1.791668e-04i -1.443156e-04 + -4.814099e-05i
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 1.230587e-03 + -1.055939e-03i 6.551065e-04 + 7.761156e-04i -5.968688e-03 + 1.028909e-02i 1.731034e-03 + -7.704293e-04i -8.825895e-03 + 2.582980e-03i 3.723523e-03 + 4.020475e-03i 9.833389e-04 + -3.185097e-04i 1.820549e-03 + -1.605529e-03i
H1:ASC-REFL_A_DC_PIT_OUT_DQ 3.556509e-05 + -1.686444e-06i -2.524453e-06 + 2.122120e-06i -1.156031e-06 + 1.013489e-06i -6.598642e-08 + 2.967129e-08i -3.343588e-08 + -6.077388e-08i 6.117673e-08 + -5.372022e-08i -7.102079e-09 + 1.051356e-08i -9.496058e-08 + 4.445623e-08i
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 4.918521e-01 + -1.505496e-02i -5.492416e-02 + 2.253053e-02i -1.744630e-01 + -1.633639e-02i -3.700791e-03 + 2.983460e-03i -4.672292e-04 + -7.590361e-04i -3.084893e-04 + -8.143973e-04i 6.048928e-05 + 1.152462e-05i 4.563471e-04 + -1.195815e-04i
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 3.288559e-02 + -1.485062e-03i -8.570950e-03 + 6.109983e-04i -3.753427e-02 + -3.177567e-03i -5.361465e-04 + 5.829716e-04i 4.453154e-06 + -1.130363e-04i -7.094357e-04 + 8.953677e-05i 2.370340e-05 + -4.759130e-06i 1.498090e-04 + -3.277100e-05i
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ -1.717439e-01 + 5.080024e-03i -5.648190e-03 + 3.560401e-03i -4.769500e-02 + -3.742314e-03i -1.313616e-03 + 9.878956e-04i -9.137138e-04 + 2.460885e-04i 5.968473e-03 + -4.196406e-03i -7.612034e-06 + 4.076680e-06i -2.847650e-04 + 1.198387e-04i
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ -4.743716e-02 + 1.592092e-04i -3.591975e-03 + 4.090006e-03i -4.437064e-02 + -1.754794e-03i -2.895197e-04 + 4.369247e-03i -7.990828e-04 + 3.526144e-04i -1.710402e-03 + -2.462856e-03i 2.029484e-05 + 8.908857e-06i -8.450830e-05 + 4.879703e-05i
H1:ASC-REFL_B_DC_PIT_OUT_DQ 3.626411e-05 + -1.805850e-06i -1.592793e-06 + 9.949552e-07i 2.044958e-06 + 5.336766e-07i 6.650968e-08 + -5.469528e-08i -5.997581e-09 + -2.599819e-08i -2.519817e-08 + 2.387429e-08i -4.991200e-09 + -2.644183e-09i 8.266320e-10 + -4.603886e-09i
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ -4.486942e-01 + 1.304767e-02i -1.732077e-03 + -1.731940e-02i -1.126622e-01 + -1.628668e-03i -1.654593e-03 + 1.275724e-03i 1.157404e-04 + -5.695740e-04i -1.404320e-03 + 1.717205e-03i -4.053754e-05 + 2.470159e-05i 2.155245e-04 + -1.809916e-04i
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ -1.691391e-01 + 4.549866e-03i 1.835545e-03 + -6.391507e-03i -2.787626e-02 + -2.639533e-04i -3.442336e-04 + 1.699520e-04i 1.162836e-04 + -1.325842e-04i -9.996080e-05 + 4.481241e-04i -2.451886e-06 + 3.146583e-06i 8.992282e-05 + -4.124190e-05i
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ 1.775932e-01 + -5.958107e-03i -1.857046e-02 + 1.728843e-02i -3.598851e-02 + -1.580115e-03i -6.261681e-04 + 1.916395e-03i 1.838827e-04 + -2.562165e-05i -3.589322e-03 + 2.677149e-04i 2.585210e-05 + -1.100545e-05i -2.777937e-04 + 1.745267e-04i
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ 1.903014e-02 + -7.802214e-04i -5.143272e-03 + 2.247744e-03i -3.675366e-03 + -6.601595e-03i -1.870535e-03 + -1.741894e-03i 4.785762e-04 + -7.580107e-04i -1.035418e-03 + 2.681110e-03i -7.082819e-06 + -7.641297e-07i -6.915671e-05 + 4.305569e-05i
H1:ASC-POP_A_PIT_OUT_DQ -1.176213e-07 + 1.532806e-09i -3.707889e-07 + 2.475533e-07i -8.273338e-07 + -1.540561e-08i -1.898396e-08 + 1.768077e-08i -5.828878e-09 + -4.492251e-09i -4.203306e-09 + -1.105479e-10i -9.883953e-11 + 2.719224e-10i 4.126631e-09 + -2.858506e-09i
H1:ASC-POP_B_PIT_OUT_DQ -1.459867e-07 + 8.681662e-09i -4.213083e-07 + 3.091063e-07i 2.747666e-07 + 1.354293e-09i 5.754972e-09 + -6.603841e-09i -3.320451e-09 + 1.464809e-09i 1.765425e-10 + 2.614915e-09i 7.935098e-11 + -3.269396e-10i -2.511666e-09 + 2.201856e-09i
GPS Times: 1109761340 1109761400 H1:ASC-INP1_P_EXC 1109761421 1109761481 H1:ASC-PRC1_P_EXC 1109761502 1109761562 H1:ASC-PRC2_P_EXC 1109761584 1109761644 H1:ASC-MICH_P_EXC 1109761665 1109761725 H1:ASC-SRC1_P_EXC 1109761746 1109761807 H1:ASC-SRC2_P_EXC 1109761828 1109761888 H1:ASC-DHARD_P_EXC 1109761909 1109761969 H1:ASC-CHARD_P_EXC
H1 ISC (ISC)
gabriele.vajente@LIGO.ORG - posted 03:43, Saturday 07 March 2015 (17126)
Full lock ASC sensing matrix yaw

Sensing matrix (abs)

Excitation: H1:ASC-INP1_Y_EXC H1:ASC-PRC1_Y_EXC H1:ASC-PRC2_Y_EXC H1:ASC-MICH_Y_EXC H1:ASC-SRC1_Y_EXC H1:ASC-SRC2_Y_EXC H1:ASC-DHARD_Y_EXC H1:ASC-CHARD_Y_EXC
Monitor channel: H1:ASC-INP1_Y_OUT_DQ H1:ASC-PRC1_Y_OUT_DQ H1:ASC-PRC2_Y_OUT_DQ H1:ASC-MICH_Y_OUT_DQ H1:ASC-SRC1_Y_OUT_DQ H1:ASC-SRC2_Y_OUT_DQ H1:ASC-DHARD_Y_OUT_DQ H1:ASC-CHARD_Y_OUT_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ 4.031685e-07 5.392346e-07 8.311928e-06 2.881588e-06 1.004452e-06 3.301726e-06 1.667395e-07 1.524016e-08
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 1.991316e-02 3.858034e-02 2.998611e-01 3.219276e-01 1.353022e-02 2.613919e-02 5.956869e-05 3.014351e-06
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ 1.013659e-02 8.320306e-03 5.906850e-02 1.600886e-01 1.564192e-03 3.046164e-02 2.631369e-04 4.566430e-05
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ 1.661431e-03 2.121179e-03 6.452280e-03 2.210928e-02 1.743886e-03 6.018634e-03 9.055341e-04 2.395158e-04
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ 3.612030e-03 3.187511e-03 6.402889e-02 1.849432e-02 6.428634e-03 1.990436e-02 1.930394e-03 4.172696e-04
H1:ASC-AS_B_DC_YAW_OUT_DQ 1.757336e-07 6.941324e-07 8.164861e-06 4.630952e-07 1.081163e-06 5.167964e-07 1.199717e-07 1.471614e-08
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ 4.313914e-03 9.863339e-03 3.969614e-02 9.370721e-02 2.542824e-03 2.871498e-02 2.469401e-04 3.410662e-05
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 2.080965e-02 2.235516e-02 1.705056e-01 1.804781e-01 6.698143e-03 2.710248e-02 3.950121e-05 2.041372e-05
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 1.020778e-03 9.954585e-04 6.219793e-03 1.549895e-02 1.600995e-03 2.809151e-03 6.968702e-04 2.112154e-04
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ 1.365308e-03 6.034298e-04 2.545113e-02 1.160158e-02 6.862895e-03 3.255676e-03 1.580237e-03 3.007709e-04
H1:ASC-REFL_A_DC_YAW_OUT_DQ 5.887914e-05 3.642079e-06 4.864500e-06 8.840696e-07 5.707180e-08 1.118971e-07 1.920320e-09 1.760073e-08
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ 9.125244e-01 4.685791e-02 1.433883e-01 2.719587e-02 3.398776e-04 3.071677e-03 9.913482e-06 3.254621e-04
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ 1.119344e-01 4.052422e-03 3.017529e-02 2.788209e-03 7.235137e-05 6.180180e-04 1.174930e-05 8.308296e-05
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ 3.226940e-01 1.826235e-02 2.025763e-01 5.645713e-02 1.924779e-03 8.484405e-03 1.656515e-05 2.711756e-04
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ 7.134476e-02 8.995083e-03 1.064620e-01 2.517365e-02 2.447210e-03 9.818037e-03 4.068771e-06 1.069372e-04
H1:ASC-REFL_B_DC_YAW_OUT_DQ 7.072096e-05 1.609598e-06 3.478367e-06 3.256197e-07 4.663900e-08 6.349670e-08 1.569532e-09 8.590143e-09
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 7.147608e-01 1.396809e-02 2.839755e-01 4.478032e-02 1.249494e-03 3.379724e-03 7.465704e-06 3.472900e-04
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 2.724818e-01 5.678733e-03 9.150944e-02 1.270724e-02 3.721091e-04 9.763051e-04 2.295483e-06 6.932303e-05
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ 2.846739e-01 2.667722e-02 5.800374e-02 9.514586e-03 4.868248e-04 1.040630e-03 1.751774e-05 3.269201e-04
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ 2.082370e-02 6.591069e-03 3.520480e-02 1.409508e-02 4.185252e-04 1.431846e-03 5.608350e-06 6.566866e-05
H1:ASC-POP_A_YAW_OUT_DQ 2.329535e-07 4.373996e-07 7.104547e-07 1.840680e-07 3.540810e-09 1.446617e-08 3.051640e-10 4.730231e-09
H1:ASC-POP_B_YAW_OUT_DQ 1.624792e-07 3.356867e-07 4.080737e-07 1.022386e-07 1.532934e-09 7.861499e-09 2.480083e-10 4.031364e-09

Coherence matrix

Excitation: H1:ASC-INP1_Y_EXC H1:ASC-PRC1_Y_EXC H1:ASC-PRC2_Y_EXC H1:ASC-MICH_Y_EXC H1:ASC-SRC1_Y_EXC H1:ASC-SRC2_Y_EXC H1:ASC-DHARD_Y_EXC H1:ASC-CHARD_Y_EXC
Monitor channel: H1:ASC-INP1_Y_OUT_DQ H1:ASC-PRC1_Y_OUT_DQ H1:ASC-PRC2_Y_OUT_DQ H1:ASC-MICH_Y_OUT_DQ H1:ASC-SRC1_Y_OUT_DQ H1:ASC-SRC2_Y_OUT_DQ H1:ASC-DHARD_Y_OUT_DQ H1:ASC-CHARD_Y_OUT_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ 0.877995 0.936322 0.964207 0.964613 0.999556 0.999214 0.951342 0.366137
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 0.958806 0.981377 0.975624 0.999814 0.994314 0.988471 0.880617 0.004955
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ 0.952277 0.901434 0.820429 0.999562 0.922665 0.998616 0.942394 0.584411
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ 0.933718 0.890399 0.328643 0.993219 0.993367 0.998007 0.996696 0.937408
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ 0.935617 0.830683 0.921302 0.935596 0.996761 0.998303 0.986227 0.831517
H1:ASC-AS_B_DC_YAW_OUT_DQ 0.514456 0.977653 0.982686 0.461225 0.999363 0.990782 0.973868 0.622839
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ 0.813502 0.951416 0.598040 0.997792 0.952954 0.998459 0.958816 0.515462
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 0.961435 0.962455 0.948682 0.998859 0.979631 0.993586 0.877446 0.239719
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 0.922720 0.667963 0.402587 0.991521 0.995724 0.994284 0.996490 0.945958
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ 0.854440 0.083537 0.587561 0.874576 0.997187 0.978271 0.980857 0.735839
H1:ASC-REFL_A_DC_YAW_OUT_DQ 0.994522 0.620990 0.135750 0.010622 0.009686 0.281819 0.009492 0.055766
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ 0.998993 0.839166 0.090888 0.447572 0.049205 0.759129 0.167374 0.930424
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ 0.951957 0.447989 0.119508 0.166774 0.045552 0.587132 0.703928 0.839773
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ 0.997771 0.785327 0.607030 0.929066 0.882284 0.937111 0.684537 0.984272
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ 0.945654 0.815915 0.738725 0.882462 0.976567 0.993592 0.537407 0.991905
H1:ASC-REFL_B_DC_YAW_OUT_DQ 0.999068 0.742474 0.031397 0.008371 0.031052 0.167697 0.038491 0.070031
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 0.999382 0.461010 0.448559 0.823345 0.647265 0.888297 0.323946 0.987841
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 0.999599 0.643543 0.459728 0.772427 0.553919 0.841013 0.243502 0.955394
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ 0.998420 0.953713 0.271192 0.563421 0.766779 0.211379 0.886829 0.998096
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ 0.988042 0.865125 0.415478 0.635645 0.289426 0.728005 0.838418 0.991842
H1:ASC-POP_A_YAW_OUT_DQ 0.995662 0.999210 0.988526 0.943128 0.435541 0.992223 0.871966 0.993443
H1:ASC-POP_B_YAW_OUT_DQ 0.996257 0.999320 0.971955 0.940216 0.319431 0.991293 0.911992 0.996432

Sensing matrix (complex)

Excitation: H1:ASC-INP1_Y_EXC H1:ASC-PRC1_Y_EXC H1:ASC-PRC2_Y_EXC H1:ASC-MICH_Y_EXC H1:ASC-SRC1_Y_EXC H1:ASC-SRC2_Y_EXC H1:ASC-DHARD_Y_EXC H1:ASC-CHARD_Y_EXC
Monitor channel: H1:ASC-INP1_Y_OUT_DQ H1:ASC-PRC1_Y_OUT_DQ H1:ASC-PRC2_Y_OUT_DQ H1:ASC-MICH_Y_OUT_DQ H1:ASC-SRC1_Y_OUT_DQ H1:ASC-SRC2_Y_OUT_DQ H1:ASC-DHARD_Y_OUT_DQ H1:ASC-CHARD_Y_OUT_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ 4.027209e-07 + 1.899337e-08i -6.253913e-09 + -5.391983e-07i 2.288100e-06 + 7.990791e-06i -1.737378e-06 + 2.298928e-06i 9.970103e-07 + -1.220431e-07i -3.298331e-06 + 1.496864e-07i -1.508166e-07 + 7.110860e-08i 1.422199e-08 + 5.477017e-09i
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 1.212717e-02 + 1.579448e-02i 3.751943e-02 + -8.985242e-03i -2.913908e-01 + -7.076751e-02i -2.472445e-01 + 2.061735e-01i -1.322697e-02 + -2.848534e-03i 1.366219e-02 + 2.228457e-02i 4.838004e-05 + 3.475343e-05i 1.461367e-06 + -2.636422e-06i
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ 6.193082e-03 + 8.024728e-03i 8.308821e-03 + 4.370276e-04i -5.859089e-02 + 7.496292e-03i -1.291612e-01 + 9.458192e-02i 5.299499e-04 + -1.471683e-03i -2.998403e-02 + 5.372998e-03i -2.257520e-04 + -1.351926e-04i 2.035940e-06 + 4.561889e-05i
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ -1.106900e-03 + -1.239001e-03i -1.770337e-03 + 1.168462e-03i 4.923293e-03 + -4.170503e-03i 1.573156e-02 + -1.553507e-02i -1.447344e-03 + 9.727969e-04i 5.396046e-03 + -2.665830e-03i 7.231289e-04 + -5.450473e-04i -1.847234e-04 + 1.524634e-04i
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ 3.338836e-03 + -1.378019e-03i -5.265454e-04 + -3.143720e-03i 3.048349e-02 + 5.630679e-02i -1.485481e-02 + 1.101701e-02i 6.256012e-03 + -1.479746e-03i -1.980437e-02 + 1.992639e-03i -1.813056e-03 + 6.627589e-04i -6.409816e-05 + 4.123170e-04i
H1:ASC-AS_B_DC_YAW_OUT_DQ 1.461257e-07 + 9.761966e-08i 6.782250e-07 + -1.477519e-07i -7.024469e-06 + -4.161945e-06i 4.608787e-07 + -4.525432e-08i -1.071667e-06 + 1.429777e-07i -5.075450e-07 + -9.734776e-08i 1.095644e-07 + -4.887599e-08i 7.568048e-10 + -1.469667e-08i
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ 3.204781e-03 + 2.887774e-03i -5.959230e-03 + 7.859582e-03i -2.801530e-02 + -2.812343e-02i -5.956846e-02 + 7.233699e-02i 2.381974e-03 + 8.900326e-04i 2.864792e-02 + 1.961192e-03i -2.172238e-04 + -1.174446e-04i -1.559346e-05 + 3.033324e-05i
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 2.003745e-02 + 5.616267e-03i 1.835800e-02 + -1.275684e-02i -1.613873e-01 + 5.501185e-02i -1.121047e-01 + 1.414386e-01i -6.570962e-03 + -1.299065e-03i 2.710236e-02 + -8.189905e-05i 3.852000e-05 + -8.749586e-06i 8.448834e-06 + 1.858325e-05i
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 2.658061e-04 + 9.855628e-04i 9.948031e-04 + -3.611703e-05i -2.906763e-03 + -5.498778e-03i -1.155863e-02 + 1.032548e-02i 1.425911e-03 + -7.279870e-04i -4.509042e-04 + 2.772727e-03i -5.449907e-04 + 4.342962e-04i 1.579692e-04 + -1.402059e-04i
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ -9.145710e-04 + 1.013719e-03i 4.887684e-04 + 3.538828e-04i -2.033838e-02 + -1.530067e-02i 1.034215e-02 + -5.257066e-03i -6.722925e-03 + 1.378987e-03i 9.717521e-04 + -3.107270e-03i 1.459218e-03 + -6.064927e-04i 7.583010e-05 + -2.910549e-04i
H1:ASC-REFL_A_DC_YAW_OUT_DQ -5.860906e-05 + 5.633033e-06i 2.525165e-06 + -2.624554e-06i -8.568744e-07 + 4.788437e-06i -7.984156e-07 + -3.796204e-07i -1.069412e-08 + -5.606092e-08i 1.099525e-07 + -2.077054e-08i 3.289540e-10 + -1.891935e-09i -1.713573e-08 + -4.019022e-09i
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ -9.114679e-01 + 4.389823e-02i 3.058194e-02 + -3.550223e-02i -7.655207e-02 + 1.212435e-01i -2.045725e-02 + 1.791971e-02i -2.217381e-04 + -2.575830e-04i 2.933607e-03 + 9.105774e-04i -3.089962e-06 + 9.419621e-06i 3.028945e-04 + -1.190819e-04i
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ -1.118313e-01 + 4.802969e-03i 1.243774e-03 + -3.856832e-03i 2.259966e-03 + 3.009054e-02i -2.081784e-03 + 1.854800e-03i 8.551393e-06 + 7.184424e-05i 6.137564e-04 + -7.245219e-05i 2.335265e-06 + -1.151488e-05i 7.971158e-05 + -2.342738e-05i
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ 3.223035e-01 + -1.587003e-02i 1.731560e-02 + -5.803764e-03i -1.951371e-01 + -5.439350e-02i -7.334375e-03 + 5.597870e-02i -1.390848e-03 + 1.330532e-03i 8.352473e-03 + 1.490413e-03i 1.525240e-05 + -6.462832e-06i -2.423681e-04 + 1.216301e-04i
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ 7.133986e-02 + -8.361979e-04i 7.654021e-03 + 4.725196e-03i -1.584410e-02 + -1.052764e-01i -1.961981e-02 + -1.577263e-02i 1.332580e-03 + -2.052576e-03i 7.550922e-03 + -6.275144e-03i -3.783090e-06 + -1.497708e-06i -9.110278e-05 + 5.599862e-05i
H1:ASC-REFL_B_DC_YAW_OUT_DQ -7.049794e-05 + 5.612092e-06i 1.081151e-06 + -1.192442e-06i 3.360272e-06 + 8.986711e-07i 2.346302e-07 + -2.257806e-07i 4.108104e-08 + 2.208041e-08i 4.947713e-09 + -6.330364e-08i -1.548611e-09 + 2.554095e-10i 8.190983e-09 + -2.588118e-09i
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 7.138949e-01 + -3.517070e-02i 5.926564e-03 + 1.264845e-02i -2.368256e-01 + -1.567026e-01i -3.877796e-02 + 2.239523e-02i -9.721380e-04 + -7.849731e-04i 1.722394e-03 + 2.907902e-03i 4.637671e-06 + -5.850533e-06i 3.044071e-04 + -1.671727e-04i
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 2.721447e-01 + -1.355046e-02i 8.572409e-04 + 5.613658e-03i -7.114326e-02 + -5.755532e-02i -1.124951e-02 + 5.909535e-03i -2.945575e-04 + -2.273787e-04i 3.641409e-04 + 9.058549e-04i 2.285760e-06 + -2.110506e-07i 5.901495e-05 + -3.637193e-05i
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ -2.841604e-01 + 1.709044e-02i 2.314298e-02 + -1.326939e-02i -4.648977e-02 + -3.468623e-02i -9.497930e-03 + -5.627392e-04i 2.922929e-04 + -3.893112e-04i -5.357178e-04 + 8.921423e-04i -4.154870e-06 + 1.701789e-05i -2.879682e-04 + 1.547613e-04i
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ -2.074948e-02 + 1.756564e-03i 5.808172e-03 + -3.115659e-03i -3.450300e-02 + -6.994337e-03i -9.470159e-03 + 1.043970e-02i -4.149770e-04 + 5.438237e-05i 1.159381e-04 + 1.427145e-03i 1.278657e-06 + 5.460644e-06i -5.912523e-05 + 2.857588e-05i
H1:ASC-POP_A_YAW_OUT_DQ 2.328406e-07 + -7.252475e-09i 3.552911e-07 + -2.551209e-07i -7.090824e-07 + 4.413670e-08i -1.410812e-07 + 1.182249e-07i -2.361277e-09 + -2.638504e-09i 1.272490e-08 + 6.880929e-09i -1.507841e-10 + -2.653097e-10i 4.119425e-09 + -2.324956e-09i
H1:ASC-POP_B_YAW_OUT_DQ 1.612728e-07 + -1.976291e-08i 2.691307e-07 + -2.006345e-07i 4.065154e-07 + -3.562865e-08i 8.229263e-08 + -6.066842e-08i 1.615260e-10 + 1.524400e-09i -6.909220e-09 + -3.750446e-09i -1.708629e-11 + 2.474191e-10i -3.566622e-09 + 1.879124e-09i
GPS Times: 1109762803 1109762863 H1:ASC-INP1_Y_EXC 1109762884 1109762944 H1:ASC-PRC1_Y_EXC 1109762965 1109763026 H1:ASC-PRC2_Y_EXC 1109763047 1109763107 H1:ASC-MICH_Y_EXC 1109763128 1109763188 H1:ASC-SRC1_Y_EXC 1109763209 1109763270 H1:ASC-SRC2_Y_EXC 1109763291 1109763351 H1:ASC-DHARD_Y_EXC 1109763372 1109763432 H1:ASC-CHARD_Y_EXC
H1 AOS
gabriele.vajente@LIGO.ORG - posted 03:39, Saturday 07 March 2015 (17118)
New sensing matrix script

I updated the script to measure a generic sensing matrix, already described in 17085. The script attached to that log entry was using tdssine to generate the excitation: the drawback was that the sine was switched on without any ramp. Today this was causing the DRMI to drop lock.

This new version implements a ramp in and ramp out of the excitation, using awgstream. The usage is the same as the old version:

The script configuration is at the beginning of the python file. One has to set

When lauched without any command line argument, the script switches on the excitation one at a time (GPS times are saved to a log file for future reference). If you want to reprocess a previous measurment, you can launch the script passing the logfile as a command line argument. In this case the injections will not be performed, only the old data will be reprocessed.

When all line injections are done, the script reads the data from disk and compute the sensing matrix. Basically, it's the value of the transfer function (error signals) / (monitoring channels).

The output is saved to an HTML file that contains three tables:

The attached scripts have been used to measure both pitch and yaw sensing matrices in full lock, DC readout.

Sensing matrices will follow

Non-image files attached to this report
H1 ISC
evan.hall@LIGO.ORG - posted 02:41, Saturday 07 March 2015 (17124)
ASC in full lock

Sheila, Alexa, Gabriele, Dan, Evan

We've closed the following ASC loops in full lock, both pitch and yaw:

The above order is the order in which we turned them on

Turning on PR2 appears to just impress low-frequency seismic motion onto POP18 and ASAIR90. This is somewhat improved by turning on the PRM loop, but POP18 and ASAIR90 remain worse than if no PRC ASC is engaged at all.

Images attached to this report
H1 ISC (ISC)
gabriele.vajente@LIGO.ORG - posted 02:21, Saturday 07 March 2015 (17117)
A script to help tuning demodulation phases

To tune the demodulation phase of any R signal, you have to inject a line and typically minimize the line in the Q spectrum and maximize in the I spectrum.

The attached script help in this operation. If you set up the I and Q channel names and the frequency of the line you are injecting, it shows a StripTool like chart showing in real time the ratio of Q over I at the line frequency. You can then move the demodulation phase to bring the ratio to zero. Since what is plotted is the transfer function, it has a sign, so you can rely on the zero crossing.

This script can be easily modified to carry out different tasks, for example

Non-image files attached to this report
H1 ISC
alexan.staley@LIGO.ORG - posted 22:17, Friday 06 March 2015 - last comment - 00:44, Saturday 07 March 2015(17119)
DRMI ASC All Loops Closed

Sheila, Gabriele, Stefan, Alexa

Today we managed to close all DRMI ASC loops.

The gain and filter settings are depicted in the first attachment. We also have decoupled AS_C from SRM with an adjustment in the output matrix (see second attachement). The BW are all rough estimates. Both POP A DC (P,Y=-0.03. 0.3) and ASC_C D (P,Y = -0.5, 0.1) have offsets that correspond to good buildups. So far we have been able to close these loops several times even with re-running initial alignment. This is all in the guardian now.

Images attached to this report
Comments related to this report
alexan.staley@LIGO.ORG - 23:11, Friday 06 March 2015 (17120)

Originally we were only feeding back to the bottomg stage (except for BS which feeds back to M2). We have added offloading capabilities to the top stage for all the optics. As of now, we have successfully offloaded to the top stage for BS, PRM, and PR2.

Images attached to this comment
gabriele.vajente@LIGO.ORG - 23:49, Friday 06 March 2015 (17121)

In addition of what reported above, we also diagonalized the SR2/SRM actuation. With SRC1 and SRC2 ASC loop closed, we added an offset to the input of the SRC2 loop (which actuated only on SR2) and looked at how much the SRC1 loop moved the SRM to compensate for the cavity axis motion. We then added a SRC2 to SRM off diagonal driving term to reproduce this motion. The coefficient is -7.6 for pitch and 7.1 for yaw. We verified that with those new coefficients in the output matrix, an offset in the SRC2 loop does not move significantly the SRM.

This shoudl help us in increasing SRC1/SRC2 bandwidths, which are quite low right now.

gabriele.vajente@LIGO.ORG - 00:21, Saturday 07 March 2015 (17122)

In SRC2 filter banks we installed a compensator (HSTcomp, FM9) which has been designed to allow increasing the bandwidth up to few Hz. It's based on measurements of SR2 plant that we took in the straight beam configuration. In the same configuration we tested the loops and we could get a bandwidth of about 3 Hz in both pitch and yaw. Currently, we're not using such a high banwidth in DRMI configuration.

Images attached to this comment
sheila.dwyer@LIGO.ORG - 00:44, Saturday 07 March 2015 (17123)

Attached is a screen shot of the SRC2 (AS_C to SR2) loops that we commissioned in single bounce this morning.  We had to reduce the gain with DRMI locked, (perhaps because we had not done the diagonalization to SRM yet), but the loop shape should be the same.  

Also, we have now offloaded all of the DRMI ASC loops to the top stage.  The guardian engages all of these loops, slowly. (first BS, then INP1 and PRC2, the PRC1 (PRM), then SRC1, then SCR2) We have seen that this is repeatable for several different starting alignments.  The guardian turns off INP1PRC1PRC2SRC1, and SRC2 in the state CARM on TR.  We think that LLO leaves the SRC loops on during the offset reduction, we want to see that the loops still seem reasonable in full lock before leaving them on.  

We have manually requested the DRMI guardian to offload these offsets to the alignment sliders, this was rough and not very accurate but the lock survived.  

Before starting this morning, we adjusted the dark offsets on the AS WFS and checked that the segments are wired correctly (I moved the beam onto one quadrant at a time and checked that all quadrants have about the same response)

Images attached to this comment
H1 ISC (SUS)
daniel.hoak@LIGO.ORG - posted 19:19, Friday 06 March 2015 (17116)
hi-res spectrum from last night; prep for violin mode damping

The first plot attached is a 3mHz bandwidth spectrum of the calibrated DARM signal from last night's 4-hour lock.

Note the dips in the spectrum around the bounce and roll modes of the quad suspensions (9.78Hz and 13.9Hz, respectively).  Evan and I tracked these down to bandstops in the ETMX L1 LOCK_L filter bank that are not included in the calibration (because we don't have a hi-resolution loop gain measurement of DARM at those frequencies).

The second plot attached is a zoom of the region around the violin modes.  In preparation for some aggressive violin mode damping, I've populated the test mass L2_DAMP filter banks with bandpasses at frequencies for various collections of lines.  At the next late-night lock opportunity we'll apply the violin mode damping method that's described here (which has already been successfully applied for the 508.008Hz mode on ETMY) and see what we can do.

The initial assignment of modes --> optics follows the frequencies that were collected by Nutsinee here, but for the forests around 501-2Hz and 504-7Hz it's very rough guesswork.  Here is a list of the mode frequencies (measured from last night's data) and a rough assignment to optics:

Mode Frequency (Hz)

Optic

500.053 ITMX?
500.210  
   
501.091 ITMs
501.206  
501.253  
501.450  
501.606  
501.680  
501.747  
501.810  
   
502.620 ITMY?
502.743  
502.005  
502.118  
   
504.803 ETMX?
504.870  
505.585  
505.708  
505.805  
   
506.921 ETMX?
507.157  
507.192  
507.389  
   
507.991  
508.008 ETMY
508.145  
508.204  
508.219  
508.288  
   
508.583 ETMY?
508.659  

 

Also on the to-do list is to move the OMC alignment dither lines up above 1.5kHz and optimize the dither amplitude based on the OMC DCPD RIN noise floor in that band.

Images attached to this report
H1 CAL (CAL, DetChar, INJ, ISC)
jeffrey.kissel@LIGO.ORG - posted 17:40, Friday 06 March 2015 (17114)
Third Time's the Charm: Computing DARM Optical Gain Correction Factor, 'gamma'; Updates to CAL-CS and h1calcs.mdl
J. Kissel, K. Izumi, K. Kawabe

Corrections to gamma calculation
After battling through a little bit of complex number analysis in Simulink, I was able to create a revised calculation of the slowly, time-varying, optical gain correction to the IFO's DARM sensing function for the production of calibrated DARM displacement in the front end. What I had originally implemented (see LHO aLOG 17102) had ignored that the change in open loop gain transfer function at the calibration line frequency is a complex number and so what just, in general wrong. 

See attached screenshot 2015-03-05_CAL_CS_GAMMA_LINE1.png for the current implementation, and see the bottom half of LHO aLOG 17102, which is still valid, for what we intend to *do* with the infrastructure.

Notes:
- GAMMA is the ratio of the current DARM open loop gain transfer function at a given calibration line frequency, G, and the same transfer function at a reference time, G0, is ideally real and unity. It is this real part of GAMMA that is fed into the DARM block to correct the fluctuation in optical gain.
- Ideally, the GAMMA should be frequency independent, and we've implemented the correction as though it were frequency independent, i.e. the output of GAMMA calculated for ONE line should be selected in the GAMMA_MATRIX. However, offline, we'll want to *confirm* that the correction is frequency independent, so all four calibration lines have EPICS outputs and Fast Channel Test Points (even though at the moment, we're only planning to turn on two; see LLO aLOG 15870).
- The AMP EPICs input of each line (which again should be synchronized with that line's DEMOD's OSC CLK GAIN) should be in units of DARM_CTRL counts; Joe's matlab script referenced in LLO aLOG 15944 should take care of converting the desired amplitude to get an SNR of 30 in whatever current DARM sensitivity we have.

Updates to CAL_CS_MASTER
- I've cleaned up the DARM block in the CAL_CS_MASTER block, and added descriptive text that describes the output as we're currently intending to use it, i.e. as what's described in LLO aLOG 16421. See 2015-03-06_CAL_CS_DARM.png.
- I've added a DAQ channel list that will now store channels for the auxiliary degrees of freedom which we'll eventually calibrate. The policy is to store all ERR, CTRL, and SUM signals at the full data rate, but only store the SUM in the science frames. I had considered storing the CTRL channels at a lower rate in the commissioning frames, but since they're only used for commissioning the channels, and one almost always wants to put both CTRL and ERR on the same plot, out to the frequency desired for the ERR signal, I leave them sampled at the same rate. Again, this only impacts the commissioning frames. See 2015-03-06_CAL_CS.png
- I've added whitening filters for all of the auxiliary DOFs CTRL, ERR, and SUM channels. If we have dynamic range / double precision issues with DARM, I'm sure we'll eventually have similar problems with these DOFs.
- I've added EPICs readback of all ERR, CTRL, and SUM channels, and changed the naming convention to "MON" instead of "SLOW." This is so we can get displays of these channels on the overview screen which we'll evenutally have to create.

Added HARDWARE_INJ Library Part to Top Level h1calcs.mdl
I've updated the 
${userapps}/cal/common/models/ 
directory, such that we've received the new Hardware Injection library part. It's as described in LLO aLOG 17120, but in summary, the new feature is an ODC bit.
Images attached to this report
H1 SEI
hugh.radkins@LIGO.ORG - posted 17:13, Friday 06 March 2015 (17115)
Guardian CPS Setpoint and ISO loop start Study update--Causality Violated, GS13 gain switch implicated

Summary--Looking closer shows that the disturbance seen on the dofs are occurring before the loops are driving; what the hay?  GS13 switching very likely the thing.

Details: Hugo gave me some changes for the guardian and it does as expected but that did not correct the problem.  There was some suspicion that Guardian may have been doing things at the same time and I think these result bear this out but I ignored one thing I should have ruled out first.

The first attachment shows a manual isolation turn on from Tuesday.  This is a zoom in from alog 17042.  MICH is NOT on.  First I use the Reset CPS offset button on the medm which gets 12 samples over 3 seconds for an average (T=1).  It then loads a ramp time of 5 seconds, puts the average values determined into the SETPOINT_NOW, and, the model takes over from there loading the SETPOINT_NOW into the Current Setpoint (BIAS_RAMPMON) over the prescribed 5 seconds.  The next step is turning on the Z Isolation Loop.  It is only the vertical we are engaging and I do this with the Command script (with boost, T=2.)  Notice that nothing shows up on the RZ_LOCATIONMON until T=3 when I start the RZ loop.  This all looks reasonable.

The second attachment is a few minutes later using the guardian to isolate state2, MICH is still NOT in the picture.  T=1 shows that Guardian does not use a TRAMP and the front end puts it in with no delay.  Theoretically, this should not be any problem as again, the loops are not on yet.  However, at T=2, RZ and Z channels start to show motion, even though the loop switches are on until T=3, about 5 seconds later!  T=2 is hard to pinpoint but it is looks to be 2 or 3 seconds after T=1. 

The 3rd attachment is from this afternoon and now MICH is Dark Locked.  I've modified the Guardian to do a 4 second ramp of the Setpoint to RAMPMON.  You can see this as the RESIDUALMON goes to zero as well as the RAMPMON.  Then, 1 or 2 seconds after the RAMPMON is finished, the RZ starts moving, again, all before the Z-loops engage.  With Mich though, the lock breaks (see Watchdog upper right) and who knows after that.

What is the Guardian doing before this... aha!  The switching of the GS13 is being done by the guardian and although it would not impact the CPS_Z_LOCATIONMON, it may glitch the damping loop enough.  Yup, there it is.  The last plot I've added the GS13 SWSTAT and it corresponds to the time the RZ_LOCATION starts to drive off.

Until the Isolation loops are adjusted to work with the MICH LOCK, we should keep the GS13 gains in whitened low gain.  And, unless we make the gain switching even smoother, there needs to be more settling time after the gain switching when we do switch.

Images attached to this report
H1 SUS (DetChar)
nutsinee.kijbunchoo@LIGO.ORG - posted 16:10, Friday 06 March 2015 (17113)
DAC Glitches Follow up

Follow up from alog16977 to see if there are any DAC glitches seen during the full interferometer lock. No DAC glitches seen so far. I have also attached the spectrogram and the time series plot of DARM_OUT_DQ in case you're curious... 

Images attached to this report
H1 General
jeffrey.bartlett@LIGO.ORG - posted 15:04, Friday 06 March 2015 (17111)
24 Hour OpLev Trends
These are the OpLev trends for the last 24 hours. All appear to operating normally. Have also included zoom plots.  
Images attached to this report
X1 DTS (CDS)
james.batch@LIGO.ORG - posted 14:58, Friday 06 March 2015 (17112)
Updated nds2-client to version 0.11.4
The nds2-client software for x1work (Ubuntu 12.04) has been updated to 0.11.4 for testing.
LHO VE
bubba.gateley@LIGO.ORG - posted 14:56, Friday 06 March 2015 (17110)
Beam Tube Washing
Scott L. Ed P. Chris S.

The cleaning crew relocated the lights, generator and related washing equipment this morning to beam tube section from single door to X-1-5 double doors. Sampled dirty sections and re-cleaned 2 sections previously cleaned earlier in the week, charts show specific sections. 15 meters cleaned and servicing of diesel generator is ongoing.
Non-image files attached to this report
H1 AOS (AOS, CAL)
sudarshan.karki@LIGO.ORG - posted 13:26, Friday 06 March 2015 - last comment - 15:13, Monday 09 March 2015(17109)
Pcal laser transient issues

Sudarshan, Rick

We saw some transient in Pcal laser power in our recent observation. The power variation in these transients are about 20% at its max. We are working on to find where the issue is. Until then, donot trust Pcal calibartion to more than 50% (over-estimation) of what it reports.

Comments related to this report
richard.savage@LIGO.ORG - 15:13, Monday 09 March 2015 (17146)CAL

We think we have identified the source of the problem and devised a relatively simple remedy. See aLog 17145.

H1 PSL
jeffrey.bartlett@LIGO.ORG - posted 12:17, Friday 06 March 2015 (17108)
PSL DBB Scans
After correcting some operational problems and resolving file access issues, I have rerun the PSL DBB for this week. We will review the plots at the weekly PSL meeting.
Non-image files attached to this report
Displaying reports 69001-69020 of 85669.Go to page Start 3447 3448 3449 3450 3451 3452 3453 3454 3455 End