Displaying reports 75261-75280 of 76944.Go to page Start 3760 3761 3762 3763 3764 3765 3766 3767 3768 End
Reports until 09:24, Thursday 17 November 2011
H2 DAQ
david.barker@LIGO.ORG - posted 09:24, Thursday 17 November 2011 (1744)
h2ldasgw0 computer swap out

Wed 11am - noon. Dave and Dan.

As part of the investigation to the QFS problem with h2ldasgw0 which causes h2fw0 to periodically crash, Dan and I swapped out the computer for h2ldasgw0 (Sun X4270). We moved the two hard drives and two FC cards from the original X4270 into the spare unit. The FC cards were installed on separate pci-e risers.

We observed no QFS errors on reboot (which was always happening with the old computer). Unfortunately at 02:24 this morning h2fw0 crashed again. I cannot find any QFS error logs for this time on the gateway. So we'll keep the investigation going.

[Thu Nov 17 02:24:13 2011] main profiler warning: 0 empty blocks in the buffer
LHO General
patrick.thomas@LIGO.ORG - posted 21:06, Wednesday 16 November 2011 (1743)
plots of dust counts
Attached are plots of dust counts > .5 microns.
Non-image files attached to this report
H2 AOS
bram.slagmolen@LIGO.ORG - posted 20:47, Wednesday 16 November 2011 (1742)
TMSY Hanging - with Safety Catchers

Bram and Craig,

Some time in the last 24h we hung the TMSY Telescope (+ ISC breadboard). We used an optical level to level the breaboard to ~0.5mrad (0.25 mm / 500 mm), in both pitch and roll. This was quit easy achieved by moving the balance masses underneath the breadboard.

Prior the hang, we measured the mass of the breadboard/Tele to 80.54 kg. A few (6x) small beam dumps are missing (and not being installed). Also, this doesn't include the partial mass of the cables coming down from above.

We installed the safety structure, which is bearly functional, but we have a few trick up our sleaves to solve this. Then we re-adjusted the BOSEMs (lateral and along the flag) to maximize range. Also the BOSEM input filters were update to set the correct offset (open_voltage/2).

open voltage F1 = 22 700 cnt

open voltage F2 = 24 100 cnt

open voltage F3 = 28 500 cnt

open voltage LF = 31 800 cnt

open voltage RT = 20 030 cnt

open voltage SD = 30 400 cnt

Simple damping loops are engaged and working. More detailed loops will be implemented in due time.

Attached are a few photos (more at https://ligoimages.mit.edu/?c=704)

Images attached to this report
H2 SUS
betsy.weaver@LIGO.ORG - posted 17:17, Wednesday 16 November 2011 - last comment - 09:34, Thursday 17 November 2011(1741)
ITMy monolithic work
After a few rounds of hanging the monolithic in the triple hang tooling and adjusting weight at the UIM, it was decided that we install just the single chain to the full QUAD and see how it hangs.  Motivation for attaching only a single chain at a time is not the baseline plan, however we have greater room to maneuver by just doing one chain at a time which was agreeable to us given the risk of having to do more gross mass adjustments over the monolithic.  We started with the reaction chain since we had the same questions with pointing tolerances with that chain on the triple hang tooling as well.  With the full reaction chain hanging on the ISI, we corrected a pitch on the PenRe (observed in a double hang) and then observed a ~2mRad pitch error on the ITMy in the full QUAD hang.  This is in the range of adjustment at the top stage so we stopped to again remove that chain and install the main chain.  Currently, the main chain (monolithic) is suspended in a triple and Jason is taking pitch readings.  We observed a large pitch error at the top mass so we will need to adjust that in the morning under the full hang (course pitch adjusters on the top mass).
Comments related to this report
jason.oberling@LIGO.ORG - 09:34, Thursday 17 November 2011 (1747)

Measured the triple hang PUM and ITM pitch after letting it settle overnight (was swinging to much yesterday evening to get accurate numbers):

    PUM: ~1.314 mrad down
    ITM: ~1.096 mrad up
    Differential: ~2.410 mrad

X1 SUS
jeffrey.garcia@LIGO.ORG - posted 16:57, Wednesday 16 November 2011 (1740)
QUAD 04 BUILD 03 lower stages cabling
Andres R., Jeff B., Jeff G.

Two of the lower stages of the QUAD 04 BUILD 03 were cabled up with the quadrapuss cables.  The BOSEMs on L1 (UIM) were confirmed on the MEDM read out as well as the AOSEMs on the L2 (PUM) stage.  All of the R0 chain masses are still locked on the earthquake stops.  Tomorrow the crew will free the masses, work on initial alignment, then attempt to center the BOSEM/AOSEMs in their center of range.
X1 SUS
james.batch@LIGO.ORG - posted 16:32, Wednesday 16 November 2011 (1739)
Updated Suspension Test Stand to RCG 2.3.1
Updated suspension test stand in staging building to RCG 2.3.1.  Updated application software as well, awgstream, dataviewer, gds, mDV, and nds2-client.  Rebooted test stand, restarted iop and x1susquad models.
LHO General
corey.gray@LIGO.ORG - posted 15:57, Wednesday 16 November 2011 (1738)
Ops Day Shift Summary

Summary:

Along with the first day of the NSF Review, we had our first snow of the season.

Day's Activities:

H2 FMP
jodi.fauver@LIGO.ORG - posted 14:21, Wednesday 16 November 2011 (1737)
aHAM-11 ICC
Brushing is finished in the chamber and first vacuum has begun. Care was taken to change the brush when moving from section to section to reduce any possible cross-contamination. 
X1 SUS
jeffrey.garcia@LIGO.ORG - posted 13:34, Wednesday 16 November 2011 (1736)
X1 SUS QUAD 04 Looks Good, Ready for Lacing Cables
J. Garcia, J. Kissel

We have completed the first round of M0 and R0 Top2Top measurements, for X1SUSQUAD04, and they look excellent -- as good, if not better, than all other QUAD's measured in this state. "This state" is metal dummy masses, fully suspended and balanced, with only the M0 and R0 cables hooked up (i.e. no lacing cables down the reaction chain). 

See the attached .pdfs for results.

I show the best 4 suspensions in this state for comparison, 2 ITM QUADs and 2 ETM QUADs: X2 SUS QUAD 11, H2 SUS ITMY, X2 SUS QUAD 13, and X1 SUS QUAD 04; in addition to the model, which is a Main Chain model with metal dummy masses. Remember, the difference between the ITM and ETM QUADs is only in the reaction chain, in that the ITMs have the thin compensation plate (100mm thick, for 20 mm gap), and the ETMs still have the ERMs with (130 mm thick, for 5mm gap). Because the difference in thickness requires different physical parameters for the reaction chains, the dynamics are different.

This being said, one can see that X2 SUS QUAD 13, and X1 SUS QUAD 04 -- two such sus's that should be exactly identical -- show the exact same dynamics. Good!!

--------------
Data:

/ligo/svncommon/SusSVN/sus/trunk/QUAD/X1/QUAD04/BUILD03/SAGM0/
DTT Files = Data/111114_x1susquad4_bld3_M0_*_WhiteNoise_TF.xml
Exported Text Files = Data/2011-11-15_QUAD4_BLD3_M0-*_tf.txt
Gathered Results mat file = Results/2011-11-15_X1SUSQUAD04_M0.mat

/ligo/svncommon/SusSVN/sus/trunk/QUAD/X1/QUAD04/BUILD03/SAGR0/
DTT Files = Data/111115_x1susquad4_bld3_R0_*_WhiteNoise_TF.xml
Exported Text Files = Data/2011-11-15_QUAD4_BLD3_R0-*_tf.txt
Gathered Results mat file = Results/2011-11-15_X1SUSQUAD04_R0.mat


Analysis Scripts

/ligo/svncommon/SusSVN/sus/trunk/QUAD/Common/MatlabTools/
plotallquad_dtttfs.m
plotquad_dtttfs.m
Non-image files attached to this report
H2 SUS
betsy.weaver@LIGO.ORG - posted 20:57, Tuesday 15 November 2011 (1735)
ITMy Monolithic status
Today, the ITMy reaction chain was attached to the quad upper structure on the ISI. After lacing the cables down through the UIM and PUM, the chain was suspended.  At first glance, it appeared that the masses were hanging quite normal as observed by eye.  So the reweighting of the UIM while on the triple hang tooling last week in fact did set the chain somewhat appropriately. Tomorrow, Jason will give us a pitch reading off of the CP so we can assess further.
Images attached to this report
H2 SUS
jeffrey.kissel@LIGO.ORG - posted 18:51, Tuesday 15 November 2011 (1734)
H2 SUS FMY vs L1 SUS BSFM06
A. Effler, J. Kissel

Attached is a comparison between the first two aLIGO BSFMs built. Encouragingly, the look strikingly similar!

The most significant difference is in Pitch (who's surprised?), where the first pitch mode for L1 SUS BSFM06 is 0.46, and 0.47 for H2SUSFMY. If you remember, we battled quite hard to get H2 SUS FMY where it is, see 
1297
974,
and in the end, decided that the last iteration of physical parameters on H2 SUS FMY (formerly BSFM01), resulting in the pitch mode of 0.47 was good enough. Here, with BSFM06, I know that we've incorporated all of the fixed changes (wire lengths, M3 prisms), and have built the only adjustable parameter (the blade tip heights, which determine/directly effect d1) has been set to the H2 SUS FMY value of 23.6 mm. However, the DC magnitude of the pitch transfer function is lower by a bit, and the highest resonant frequency is higher at 1.51 Hz.

We must bare in mind, that these BSFM06 measurements where taken on 111112, before it was known that the oplev mirror was causing DC pitch errors. This has sense been corrected, and data is pending, see Anamaria's entry for further details.

Further comments / recommendations to come, once we see a new set off data from BSFM 06, after OpLev mirror adjustment.
Non-image files attached to this report
LHO General
patrick.thomas@LIGO.ORG - posted 17:38, Tuesday 15 November 2011 (1733)
plots of dust counts
Attached are plots of dust counts > .5 microns.
Non-image files attached to this report
H1 TCS
greg.grabeel@LIGO.ORG - posted 17:18, Tuesday 15 November 2011 (1732)
Labeling the Ring Heater cables
Thomas Vo
Greg Grabeel

Using our patent pending prison-tat technology Thomas and I gave street cred to the cables for Ring Heater assembly #3. The new ink includes:

   - D1001518-v6, SN-3, Junction 1
   - D1001519-v5, SN-3, Junction 4
   - D1001520-v4, SN-3, Junction 7
   - D1001520-v4, SN-3, Junction 8
   - D1001520-v4, SN-3, Junction 9
   - D1001521-v5, SN-3, Junction 10
   - D1001521-v5, SN-3, Junction 11
Images attached to this report
X1 SUS
jeffrey.garcia@LIGO.ORG - posted 15:24, Tuesday 15 November 2011 (1731)
QUAD 04 BUILD 03 M0 WhiteNoise TFs
Attached are the WhiteNoise excitation transfer functions for the QUAD 4 Build 3 M0 stage.  Measurements were conducted in DTT with uniform drive amplitude from 0 to 1000Hz.  Amplitudes were tuned according to DoF.  Data has been exported to text files and committed to the SUS SVN.  


-----
Plots Directory:
'~/SusSVN/sus/trunk/QUAD/X1/QUAD04/BUILD03/SAGM0/Results/'

Data Directory:
'~/SusSVN/sus/trunk/QUAD/X1/QUAD04/BUILD03/SAGM0/Data/'



Non-image files attached to this report
H2 SUS
jeffrey.kissel@LIGO.ORG - posted 10:09, Tuesday 15 November 2011 (1727)
H2 SUS FMY (Suspended Bits) Ready for Cartridge Install
J. Kissel, J. Garcia, R. Quitzo-James, T. Sadeki

After looking deeper into the source of the 0.65 Hz L weirdness seen in 111108's set of H2SUSFMY transfer functions, we narrowed it down to the area around F3 as the cause of the wierdness by looking at the L to F2F3 transfer function which shows the resonance only in the L to F3 transfer function (where we would expect both L to F2 and L to F3 tranfer functions to be identical).

As expected, when Travis when into take a look this morning, he found that the F3 OSEM sensor/coil was cocked to one side, leaving the flag uncomfortably close to rubbing with the sensor head. Sure enough, after he re-centered the F3 OSEM with respect to the flag, we quickly remeasured the L response on the floor, and the resonance disappeared.

I've since taken a full suite of DTT measurements, and I attach the results. The first attachment gives the big picture since Phase 1 measurements in the assembly area, where BLACK shows the Phase 1 blessed TF, ORANGE shows the confusing results from 111108, with the weird 0.65 Hz L resonance, and the (unresolved? lossy?) low frequency pitch modes, and MAGENTA shows today results. The second attachment shows todays results alone, with all of the usual comparisons of cross-coupling and OSEM-basis decompositions. 

Dare I say that today's result look even better than the Phase 1 measurements in the assembly area?

Hooray!

This means that H2 SUS FMY's "must have before cartridge install" list is almost entirely complete:

- Damping loop functionality confirmed (DONE)
- BSC-ISI + FMY watchdog functionality confirmed (DONE)
- Top2Top M1 transfer functions that match best data for this BSFM, after fully assembled, aligned, and cabled (DONE, as of today's measurement)
- Vibration absorber measurements confirming functionality and goodness (Some data taken, may need to be retaken, if not at least analyzed)
- All M2 (Middle stage) OSEMs aligned, set at mid-range, and sensors confirmed functional by CDS readout (DONE)

and we can move on (in our spare time between ITMY and ETMY) we can take some "exploratory" measurements. However, as mentioned in the title, the vibration absorbers are independent of the suspended portion of the suspension, and we can consider H2 SUS FMY cleared for cartridge install.

Note on hardware -- we still also to install the stray-light-control elliptical baffle to cover the M3 face of the dummy optic.

---------------------
Data:

SusSVN/sus/trunk/BSFM/H2/FMY/SAGM1/Data/111114*.xml
or coalesced in
SusSVN/sus/trunk/BSFM/H2/FMY/SAGM1/Results/111114_H2SUSFMY_M1.mat


Analysis Scripts

SusSVN/sus/trunk/BSFM/Common/MatlabTools/plotallbsfm_tfs.m (first attachment)
SusSVN/sus/trunk/BSFM/Common/MatlabTools/plotBSFM_dtttfs.m (second attachment)

Non-image files attached to this report
LHO General
thomas.vo@LIGO.ORG - posted 09:16, Tuesday 15 November 2011 (1730)
2011-11-14 Ops day summary
- Delivery from Columbia Porcelain 
- ICC on Ham 11, 12
- Monitoring counts on Dust 3,4, & 11
LHO General
thomas.vo@LIGO.ORG - posted 09:05, Tuesday 15 November 2011 (1729)
Analysis of 2011-11-14 Dust Monitors 3, 4, &11
Attached are the trend plots for the three dust cameras 3, 4, & 11.  Dust Monitor 3 and 4 were located in the clean room over the ISI/Quad Test stand. Dust Monitor 11 was located between the aforementioned clean room and the clean room over HAM 12 where ICC were using drills throughout the day.  The plots are intended to look for any high dust counts that could connect monitor 11 to 3 and 4.  This would indicate the effectiveness of the anti-contamination mechanisms which are put in place to prevent particles from affecting the ITM, such as the HEPA filters over the ISI and the filter on the various drills which are used for ICC.

Note: 11 seemed to be malfunctioning at approximately 22:30 or so but was fixed about an hour later by Patrick T. Also, the ICC team did not use drills today so it's interesting to see what exactly could cause high particle counts throughout the day as well as compare the graphs to the 11/10/2011 graphs to see if the maximum counts were higher with the drills.  It's also good to know that the crane and the forklift were used throughout the day near the two clean rooms.

The biggest spike of the day near the Test stand occurred around 22:00 and at the same time 11 also had a pretty big spike and so it begs the question to see whether or not they are related.  It'd be good to see if anyone could recall what they were doing around that time so that we can pinpoint what could cause this spike in dust counts.  I was told by the SUS team that movement around the monitors could have caused this spike but it's interesting that around that time there was a big spike outside of the clean room as well.
Non-image files attached to this report
X1 SUS
jeffrey.garcia@LIGO.ORG - posted 00:26, Tuesday 15 November 2011 (1728)
QUAD 4 BUILD 3 R0 Whitenoise TFs
Attached are plots of the M0 WhiteNoise transfer functions for the six Euler DoFs.  All measurements are with 0.01Hz resolution with 15 avgs.  Exported data will be compared with matlab models and previous measurements.
Non-image files attached to this report
H2 SUS
betsy.weaver@LIGO.ORG - posted 20:32, Monday 14 November 2011 (1726)
ITMy monolithic work
Mark Barton created a Mathematica utility which pointed us in the direction of the UIM wire clamp locations on the mass as being a culprit in our asymmetric UIM mass.  I'll let him add the details of the cool model to the alog, but steal the nutshell for monolithic sake:

One thing that leapt to our attention is how sensitive the pitch is to the uimfixedfwdmm slider.  That means if the triple hang tooling bolts to the UIM in a slightly different place than the real clamps, there could be major discrepancies. 0.1 mm there is good for 14 mrad at the UIM, 7 mrad at the PUM and 5 mrad at the TM, which is rather more like what we're seeing than any prism or ear perturbation. 
-M. Barton

So, this afternoon we unclamped the triple hang tooling wire clamps and played with them in the mating grooves on the UIM.  We even switched the "right" segment for the "left" and then rehung the monolithic in the triple again.  We made no adjustments to the monolithic/UIM suspension itself.  This time, the pointing of the masses was slightly different than the morning measurements, indicating that in fact there is too large a range in something related to the triple hang tooling wire segments to get reproducible pointing.  (Note, the differentials clock together in magnitude as expected, they are in a different range than before.  From Jason's notes:

    UIM: ~1.739 mrad down
    PUM: ~0.505 mrad up
    ITM: ~2.677 mrad up

    UIM/PUM Differential: ~2.244 mrad
    PUM/ITM Differential: ~2.172 mrad

Note, we have not been able to reproduce the 5mRad differential UIM/PUM pitch noted last week, which has since gone awol.
H2 SUS
betsy.weaver@LIGO.ORG - posted 20:19, Monday 14 November 2011 (1725)
ITMy monolithic work
After the weekend, we thought it prudent to recheck the pointing on the triple monolithic suspension.  Nothing was adjusted over the weekend, so it was a good chance to look for drift, slip, settling, etc if there was any.  In fact, the pointing were effectively unchanged (compare to my Fri alog entry).  From Jason regarding this initial Monday morning measurement:

UIM: ~5.217 mrad up    
PUM: ~4.457 mrad up
ITM: ~5.835 mrad up


One comment on the UIM pitch measurement: this is being done with an optical level with 115mm between the front and back points on the UIM.  The smallest increment I can measure on the scale used for the measurement is 0.1mm.  Therefore the smallest angle that can be measured with this method is arcsin(.1/115) = 0.870 mrad.
Displaying reports 75261-75280 of 76944.Go to page Start 3760 3761 3762 3763 3764 3765 3766 3767 3768 End