Displaying reports 65381-65400 of 77210.Go to page Start 3266 3267 3268 3269 3270 3271 3272 3273 3274 End
Reports until 11:09, Tuesday 03 June 2014
H1 CDS
cyrus.reed@LIGO.ORG - posted 11:09, Tuesday 03 June 2014 (12183)
LDAP Server Certificate Updated

I've installed the renewed SSL certificate on cdsldap0 and reverted the workaround implemented yesterday on opsws0-10.  LIGO.ORG logins should now work on all the CDS workstations that are configured for it.

H1 CDS (DAQ)
david.barker@LIGO.ORG - posted 08:48, Tuesday 03 June 2014 (12181)
CDS model and DAQ restart report, Sunday and Monday 1st,2nd June 2014

model restarts logged for Sun 01/Jun/2014
2014_06_01 14:01 h1fw1

Monday: no restarts reported.

unexpected restart of h1fw1.

LHO VE
kyle.ryan@LIGO.ORG - posted 16:34, Monday 02 June 2014 (12180)
Kyle, Gerardo -> Hard Closed GV7 and GV5 -> Vent(ing) Vertex+YBM+XBM


			
			
LHO General
justin.bergman@LIGO.ORG - posted 15:55, Monday 02 June 2014 (12172)
Ops

0930 - Justin and Thomas rotate I/O motorized stage to attenuate PSL main beam power entering HAM 1 to 50mW. ALS pickoff beam still at 250mW. Both light pipes shuttered, locked and tagged.

1000 - Travis turning on cameras on IMC for mobility experiment

1030 - Corey and DanH taking a look at the cabling for HAM 6, will monitor dust count.

1049 -1115 Bubba bringing ISI storage containers into High Bay from outside

1120 - Bubba/Travis/ Betsy strategy planning on beer garden mezzanine

1225 - 1345 Jim Warner locking HEPI on BSC 1 and 3

1345 - kyle/gerardo hard closed GV5 and GV7 (see wp 4650)---closing GV7 may have created seismic transient that affected ITM oplevs

1415 - High voltage checklist cleared and all commissioners advised not to actuate in-vacuum components during the vent.

1434 - Commence venting of the vertex, YBM, XBM

1442 - gerardo turning off cold cathode gauges

1542 - Joe Gleason on parts hunt in H1 PSL ante room

H1 SUS (SUS)
betsy.weaver@LIGO.ORG - posted 14:44, Monday 02 June 2014 - last comment - 15:45, Monday 02 June 2014(12177)
Gate valve closure sometimes makes optical lever move

A short bit ago, Jim locked HEPI on BSC1 and BSC3.  Somewhat simultaneously, Kyle and Gerardo closed the gate valves near by.  Sometime during this work, both ITM oplevs witnessed yaw pointing shifts.  The ITMy witnessed a somewhat negligable shift of ~5uRad, however the ITMx saw a ~45uRad shift.

A trend of the gate valves show that the GV7 (x arm) closure lines up well with the ITMx oplev shift.  The y- arm gate valve does not correlate as well, but the shift is so small it may (or may not) have been due to the HEPI locking or other pier associated work going on near that chamber at the time.  So, it seems that the oplev jumped due to the mechanics of the gate valve closure.  Quick glances at trends of HEPI locking signals could show much correlation to the shift times.

Sorry Gerardo and Kyle, I'm eating my words - you were right.

Images attached to this report
Comments related to this report
thomas.vo@LIGO.ORG - 15:08, Monday 02 June 2014 (12178)

I think we'll still be able to get good information out of the repeatability of the optical levers once we've done some careful analysis and kept track of these gross changes due to necessary activity. So we'll just have to keep a running count of the different offsets as they accrue.

If shutting the gate vavle messes with the optical lever, we could try to alleviate the symptoms by softening the bellow connection between the viewport and the OL enclosures.

betsy.weaver@LIGO.ORG - 15:45, Monday 02 June 2014 (12179)

Yes, we noticed that one of the bellows on an ITMx oplev pier was compressed alot and therefore must be pretty stiff.

H1 PSL (PSL)
justin.bergman@LIGO.ORG - posted 13:42, Monday 02 June 2014 (12174)
PSL output and motorized rotation stage

This morning after the meeting Thomas and I actuated the motorized rotation stage in order to attenuate the laser power in the H1 PSL path. The shutter for both the main PSL beam and the ALS pickoff has been closed, locked and tagged. However, we also decided to decrease the power leaving the PSL table so that 8 W of light is not hitting the shutter for the duration of the vent.

The MEDM interface for the rotation stage has multiple functions, but the two main calls are to REQUEST ANGLE for the motorized stage or to REQUEST POWER being output after the light passes through the waveplate. Currently only the REQUEST ANGLE function is useful because of some missing calibration data. I will work to get this fixed so we can request a specific power or use the GO TO MINIMUM POWER function.

For now we plotted the power output as we rotated the stage and then manually requested an angle corresponding to the minimum. 63 degrees in this case, which corresponds to approximately 50mW of light entering the PSL light pipe. note that the ALS pickoff is before the motorized stage, so that path still has somewhere around 250mW of 1064nm light.

 

see attached for the plot of power and rotation angle

Images attached to this report
H1 CDS
cyrus.reed@LIGO.ORG - posted 12:39, Monday 02 June 2014 - last comment - 14:12, Monday 02 June 2014(12173)
Control Room ligo.org Logins

A certificate has expired on the local CDS LDAP replica which is preventing LIGO.ORG logins on some of the control room workstations (depending on when they were last rebooted, or last connected to the LDAP server).  For now, if you cannot log in to a workstation with your personal login, use the controls account instead.  I am looking at a workaround until the new certificate is issued, but that will take a while longer to roll out.

Comments related to this report
cyrus.reed@LIGO.ORG - 14:12, Monday 02 June 2014 (12176)

I have implemented a temporary workaround for opsws0-10 in the control room to allow LIGO.ORG logins, so they should work again.  On any other systems, use the controls account if your login does not work until further notice.  Access from offsite via lhocds.ligo-wa.caltech.edu is unaffected (but you will still need to keep in mind the above if using lhocds to access any internal CDS hosts).

H1 AOS
thomas.vo@LIGO.ORG - posted 10:33, Monday 02 June 2014 (12168)
ITMX and ITMY Optical Levers Re-centered For Vent

In light of the upcoming vent, it seemed like a good time test the ability of the test mass optical levers to recover from the venting, swapping and re-pumpdown. I've recentered the optical levers on 2014-06-02 17:05 UTC with the following status:

SUS values:

ITMX_Pit =  38.7

ITMX_Yaw = -48.9

ITMY_Pit =  193.4

ITMY_Yaw = -181.1

HEPI Isolated and biases are:

ITMX_RX =  -6020

ITMX_RY = -45350

ITMX_RZ =  71250

ITMY_RX =  44920

ITMY_RY =  48020

ITMY_RZ = -23500

ISI Stg1 Isolated and biases are:

ITMX_RX = -17600

ITMX_RY =  27450

ITMX_RZ =  30450

ITMY_RX =  9760

ITMY_RY = -28600

ITMY_RZ =  6760

ISI Stg2 Isolated and biases are:

ITMX_RX =  -4565

ITMX_RY = -680

ITMX_RZ =  7744

ITMY_RX =  19623

ITMY_RY = -12484

ITMY_RZ =  7496

LHO General
justin.bergman@LIGO.ORG - posted 10:22, Monday 02 June 2014 (12170)
morning meeting

LVEA transitioned to laser SAFE

Teams taking fiducial measurements (ITMs/ETMs/OpLevs)

Ready to vent all three corner station volumes after lunch

Good results from Thomas measurements on the stability of RH over the weekend

HAM4/5 doors and HAM6 septum in place

HAM6 SLED ready to install, on hold for now

need visual inspect on HAM6 cabling lengths

Apollo restoring beer garden cleanroom---coupling with BSC1/3

installation of TCS table stops on hold

need to lock HEPI for BSC1/3 due to potential contact with HEPI crossbeams

need to protect TCS mirrors during in chamber work

H1 General
travis.sadecki@LIGO.ORG - posted 10:17, Monday 02 June 2014 (12169)
Particulate Mobility Experiment is running again

The particulate mobility experiment that is mounted to HAM 3 is back up and running.  It will be running for the next 3 days to make sure the entire vent cycle is captured.

H1 ISC (ISC, SUS, TCS)
sheila.dwyer@LIGO.ORG - posted 09:41, Monday 02 June 2014 - last comment - 16:47, Wednesday 04 June 2014(12167)
alignment snapshot, ring heater changes alingment

Betsy, Sheila, Keita, Arnaud, Thomas

Here is a snap shots of the current alingment offsets. This alingment was checked quickly this morning, both of the arms are flashing green so the ITMs are within a urad or so of alinged. 

We noticed that the ailngment of ITMY was off by about 8 urad in pitch from the saved offset, this seems to be because turning on and off the ring heater changes the ailngments.  Attached are trends of the OpLevs durring the ring heater stress test this weekend, the itms moved by 2-5 urad in yaw, and both moved by about 30 urad in pitch. The third screenshot shows how the pitch changed as the ring heater power cycled.

Images attached to this report
Comments related to this report
jeffrey.kissel@LIGO.ORG - 09:50, Tuesday 03 June 2014 (12182)DetChar, SUS, TCS
@DetChar -- can you grab calibrated ASDs of the optical levers before and after the ring heaters are on full blast? It looks like they not only displace the optic in angle, but also add noise. It would be good to quantify this early, so we can fix it!
aidan.brooks@LIGO.ORG - 11:12, Tuesday 03 June 2014 (12184)
I forgot to check this. 

https://dcc.ligo.org/LIGO-T1100184
Phil Willems wrote a document (T1100184) that predicted around 0.9urad of pitch per Watt of RH power. We applied 27W of power, so the Spurious Willems Pitch is around 24urad. This seems consistent with what was seen. It's worth a more detailed look though.

I can't explain the 8urad offset between the start and finish.

laura.nuttall@LIGO.ORG - 14:37, Tuesday 03 June 2014 (12190)
From Jeff's request I've taken a look at the Oplevs before, during and after the heaters were on and found their ASDs (1st plot). These ADSs are taken over 10 minutes and the times are noted in the legend. I specifically chose times where the ITMY ISI ODC is reporting a good state. In addition the BLRMs look normal and similar for all three times. I also found the ground motion ASDs for these times (2nd plot) to reconfirm the ground motion is similar for all three times. 

Conclusion - the ASDs for the Oplevs look very similar before, during and after the heaters are on; they don't appear to add extra noise. There is perhaps an extra peak between 7-8Hz in the YAW when the heaters are on but other than that nothing stands out.
Images attached to this comment
shivaraj.kandhasamy@LIGO.ORG - 21:15, Tuesday 03 June 2014 (12197)

There is also a DC power level difference between states before after the weekend stress test. Based on the  channel H1:TCS-C_RH_Y_LOWERCURRENT and Aidan's note of 27 W in the ramp up state, the forementioned DC offset correspond to a power level difference of ~8 W (assuming 0.55 for the current level during stress test and 0.3 before the stress test and 0 after the stress test, obtained from the plot of H1:TCS-C_RH_Y_LOWERCURRENT; 27 * 0.3^2/0.55^2).  From the dcc documnet noted in the Aidan's comment this correspond to ~8 urd difference we between the initial and end states. This also means that we probably have to make new reference with the current setting (of zero current), if desired.

daniel.sigg@LIGO.ORG - 07:26, Wednesday 04 June 2014 (12198)

The ITMY ring heater was set to 8W during the past commissioning period to correct for the fact that we had an ETM with ITM coating installed. This will be changed in the current installation phase. New references will be rquired when we have the new optics installed and aligned.

betsy.weaver@LIGO.ORG - 09:15, Wednesday 04 June 2014 (12200)

Also note, the ITMs that this ring heater test was performed on are hung from metal wires in stead of glass fibers.  I wonder if this is what is making them more susceptible to steering errors when the ring heater is engaged...  The current install is to swap these ITMs out for new units complete with glass fibers.  Hopefully the ITMs won't be as susceptible to mispointing when on fibers if this is the case.

jeffrey.kissel@LIGO.ORG - 15:58, Wednesday 04 June 2014 (12209)COC, DetChar, ISC, SUS, SYS
J. Kissel

As Betsy indicates these ITMs are suspended via steel wire instead of fused silica fiber. This plays a difference in the compliance used in the Phil's calculation of the expected displacement in T1100184.

Also, the Willems calculation uses a QUAD suspension model from T1000263 which is an out-dated model parameter set that was never confirmed against real measurements (which we now have).  Also it's unclear which Stage / DOF to Stage / DOF was used to produce the "pitch coupling" of 0.154 [rad/Nm]. The mathematica notebook that is "available from the author" is regrettably *not* zipped up in the "Other Files" on the DCC card, so I can't confirm. The attached .pdf doesn't have the 0.154 anywhere in the document.

However, assuming the compliance he used was pitch displacement of the test mass from pitch torque on the test mass, the values from the production quad model model (now confirmed against measurement) are
Fiber: 0.141 [rad/N.m] (using the quadopt_fiber.m parameter set)
Wire: 0.105 [rad/N.m] (using the quadopt_wirerehang.m parameter set)
Willems quotes the displacement of the Center of Mass (CoM) as 1.47e-7 [m] for 11 [W] of ring heater power. Assuming the displacement is linear with ring-heater power (safe assumption??), that's
1.34e-8 [rad/W]
The displacement one expects per Watt of Ring heater power from the Willems model of a displaced CoM is then
Fiber:  1.34e-8 [m/W] * 40 [kg] * 9.8 [m/s^2] * 0.141 [rad/N.m] =  7.4064e-07 [rad/W] = 0.74 [urad/W]
Wire:   1.34e-8 [m/W] * 40 [kg] * 9.8 [m/s^2] * 0.105 [rad/N.m] =  5.5154e-07 [rad/W] = 0.55 [urad/W]

And therefore at max power of 27 [W], the ITMs should be displaced by
Wire: 5.5154e-07 [rad/W] * 27 [W] = 1.4892e-05 [rad] = 15 [urad].

This is a factor of two less than what is seen in ITMX Pitch (the cleanest example). For ITMY, I don't think the test mass was allowed to reach equilibrium before the ring heater's power was changed during the power cycling, so it's more difficult to assess the displacement -- but I think it's much closer to 15 [urad] judging by when the test was turned off (presumably it was turned off to zero current, and not the equivalent of 8 [W] that it had been set to as Daniel indicates).
thomas.vo@LIGO.ORG - 16:47, Wednesday 04 June 2014 (12214)

Jeff pointed out that the factor of two in the ring heater deviation could arise from the optical lever gain in ITMY being a factor of two smaller than ITMX.  We trust the ITMX's optical lever calibration because its gain was measured using the baffle PDs and the entire 4km arm (noted in ALOG 10331) but it doesn't look like a similar procedure was done for ITMY, or at least we couldn't find an ALOG that indicated as such.

H1 CDS (DAQ)
david.barker@LIGO.ORG - posted 09:10, Sunday 01 June 2014 (12163)
CDS model and DAQ restart report, Saturday 31st May 2014

no restarts reported.

H1 TCS
thomas.vo@LIGO.ORG - posted 21:54, Saturday 31 May 2014 - last comment - 23:35, Sunday 01 June 2014(12162)
TCS Ring Heater Test
D. Hosken, G. Grabeel, T. Vo

We were able to fix the ring heater chassis EtherCAT wiring by referencing the drawings.  We initially turned both ITM ring heaters to 30 Watts at 6:46 PM PT but it seems as though the maximum power that the drivers can put out is ~15-16 Watts so we changed the script that Greg wrote to run the power at 13.5 Watts during the high power portion and .5 Watts in the low power portion.  I'll come in tomorrow morning to run some trends and take some measurements.  John verified in the first hour that there were no spikes in pressure.
Comments related to this report
thomas.vo@LIGO.ORG - 13:58, Sunday 01 June 2014 (12164)
Here's the past 17 hour trends, there doesn't seem to be much correlation between pressure and ring heater cycling. The test is going to run for about another 5.5 hours or so.

Also, I've plotted one cycle at 17:17 UTC and you can see the voltage rise to a steady state in about 30 minutes or so as we would expect, which means that the temperature of ring heater in question is in fact getting hotter which changes the resistivity and the ring heater driver is reacting to that change.  The current output is noisier and the X_UpperCurrent doesn't seem to follow this trend and I'm not sure why.
Images attached to this comment
aidan.brooks@LIGO.ORG - 18:43, Sunday 01 June 2014 (12165)
The RH driver is a current source. There's an internal servo that holds the drive current steady - hence it doesn't change as the RH resistivity changes.
thomas.vo@LIGO.ORG - 23:35, Sunday 01 June 2014 (12166)
Thanks Aidan. We've finished with the test, both ITM RHs are now off.
H1 SEI (INS, SUS)
hugh.radkins@LIGO.ORG - posted 15:46, Friday 30 May 2014 - last comment - 11:59, Tuesday 03 June 2014(12146)
WHAM5 & most of HAM6 In Air Cables Reattached & secured
When the septum was removed, the cabling between HAMs 5 & 6 were disconnected so the crew could deal with all the bolts.  I asked FClara to reconnect the cables to the WHAM6 NW feedthru, SUS & ISC I think.  I'm not familiar enough to distinguish these so I left those to him.  When they are sorted out I will complete the cable/feedthru protecting.
Meanwhile, HAM5 ISI sensors are live, don't disconnect any cabling, you'll have to cut zip ties to do so.
Comments related to this report
filiberto.clara@LIGO.ORG - 10:29, Monday 02 June 2014 (12171)
Installed SUS and ISC cabling to D3 flange of HAM6 (NW corner).

Flange    Cable           Description
D3-1C1    H1:SUS_HAM6-10  OMC TOP
D3-1C2    H1:SUS_HAM6-11  OMC Right/Side

D3-2C1    H1:ISC_HAM6-265 ASC_AS_A (WFS)
D3-2C2    H1:ISC_HAM6-266 ASC_AS_B (WFS)

Document D1300122, internal in-vacuum cabling calls out for cable ISC-265 and ISC-266 to be connected to flange D5-3C1 and D5-3C2. Document should be updated.


Filiberto Clara
hugh.radkins@LIGO.ORG - 11:59, Tuesday 03 June 2014 (12187)
HAM6 NW Cables stress relieved and E-FeedThrus protected.
Displaying reports 65381-65400 of 77210.Go to page Start 3266 3267 3268 3269 3270 3271 3272 3273 3274 End