Displaying reports 861-880 of 84442.Go to page Start 40 41 42 43 44 45 46 47 48 End
Reports until 14:55, Monday 28 July 2025
H1 ISC
elenna.capote@LIGO.ORG - posted 14:55, Monday 28 July 2025 - last comment - 09:23, Thursday 07 August 2025(86027)
Changing ETMX bias

Today, Sheila and I decided to increase the ETMX ESD bias voltage. We would like to operate at a higher bias for a short period to see if the extra actuation range allows us to survive the ETMX glitch locklosses. However, we also wanted to understand what effect this has on our range.

Sheila made small steps to increase the ETMX bias voltage and adjusted the L3 drivealign gain accordingly. After every step, I measured the DARM open loop gain and we adjusted the drivealign gain further to maintain the DARM UGF. Once we doubled the voltage, we further adjusted the drivealign gain to bring kappa TST to one. It's important to note that we saw that the correction factor required to maintain the UGF (at 70 Hz) was slightly different than the correction factor required to bring kappa TST back to 1 (measured at 17.6 Hz).

We took a PCAL broadband measurement at the regular and double bias configurations (documented here). Even with kappa TST near 1, there was a small frequency-dependent difference between the two measurements.

Sheila then took us back and forth from the double bias to regular bias states so we could get some noise comparison times to determine if the noise is worse with double bias.

Times in UTC Start End
double bias 17:41:58 18:03:37
single bias 18:08:20 18:17:30
double bias 18:18:37 18:26:37
single bias 18:27:40 18:35:40

I exported the PCAL broadband injections and used them to calibration GDS strain for the four times above into PCAL meters. The noise from 15-400 Hz looks to be the same for each time, so I don't think there will be a significant impact to the sensitivity if we double the bias.

I ran a linear regression fit on the voltage and drivealign data from our steps, using this document as reference. I was able to fit alpha - gamma (slope) and the beta values (y-intercept). I calculate alpha - gamma = 9.14e-10 N/V^2 and beta - beta2 = -4.08e-8 N/V

We are planning to go to this double bias for some time to see if reduces the number of ETMX glitch locklosses.

Non-image files attached to this report
Comments related to this report
sheila.dwyer@LIGO.ORG - 09:23, Thursday 07 August 2025 (86241)

We've done this change with a guardian shell. I've attached a text file with options that people can use to do these steps, or revert them.

Non-image files attached to this comment
H1 SUS (Lockloss)
ibrahim.abouelfettouh@LIGO.ORG - posted 12:02, Monday 28 July 2025 (86025)
Lockloss 18:50 UTC

Lockloss at the end of comissioning - looks like an ETM glitch.

H1 ISC (Lockloss)
ibrahim.abouelfettouh@LIGO.ORG - posted 12:01, Monday 28 July 2025 (86023)
Lockloss 15:26 UTC

Unknown cause lockloss that happened early in comissioning while ramping bias gains, but we are unsure if this is the cause of the Lockloss.

H1 ISC (SQZ)
jennifer.wright@LIGO.ORG - posted 11:58, Monday 28 July 2025 (85988)
Constraining Mode in OMC using two PSAMS actuators

Summary: We can use single bounce scans in the OMC to constrain how the signal recycling cavity mode-matching affects mode-matching to the OMC - still a work in progress.


This is a collection of the single bounce scans we have done with the OMC in O4b and O4c (excluding some we did between April and July after the first OFI damage which might have made this meaasurement give some weird results) :

SR3 OM2 ITMX ITMY Alog Mode-mis-match [%]
Cold Cold Mis-aligned Aligned 79229 9.83
Cold Hot Mis-aligned Aligned 78727 6.62
Hot Cold Aligned Mis-aligned 85693 9.63
Hot Cold Mis-aligned Aligned 85693 7.06
Hot Hot Aligned Mis-aligned 85698 5.1
Hot Hot Mis-aligned Aligned 85698 3.08

 

For the single bounce measurements we orginally thought that which ITM the beam bounced off did not affect the mode-matching, but this looks not to be the case so in the following analysis I will only compare measurements where we had ITMX mis-aligned and the beam bouncing off ITMY.


I already used the measurements from the first two rows to estimate the beam parameter just before OM2 in the single bounce configuration in alog #84255.

Since we had the SR3 heater on in the bottom four measurements mentioned above this gives us some points to constrain the mode-matching of the input beam to the signal recycling cavity as well as to the OMC.

The q parameter can be used to define the electric field amplitude transverse to the beam propagation direction z:

U = 1/q ( exp( -jk ( x2 + y) / 2q ))

where k is the wavenumber of the light and x and y are the transverse distances from the center of the beam in the horizontal and vertical directions.

Using the overlap integral:

O(q1,q2) = | U2 U1|2 / ( |U1|2 |U1|2​ )​​​​​ 

where U1 is the field amplitude for TM 00 mode of the OMC and U2 is the field amplitude of the mode you are trying to work out the mode-matching to.

One can then define a mode mis-match between the modes U1 U2 :

MM % = (1 - O(q1,q2)) * 100,

In the previous alog I took a grid of possible q-parameters just before OM2 and plotted a contour on this grid showing which of the q values are compatible with the mode-matching I measured for hot OM2 and cold OM2.

Since I have two measurement showing SR3 hot with OM2 both cold and hot I will plot these two countours on the same plot.

The two possible qs this gives us are the overlap of the green and magenta lines - ie. the q parameter could be either of these values when SR3 is hot.

q1 = 0.748 + 0.967i

q2 = 1.44 + 1.01i

Images attached to this report
H1 PSL
ryan.short@LIGO.ORG - posted 11:27, Monday 28 July 2025 (86021)
PSL 10-Day Trends

FAMIS 31096

No major changes this week, but the FSS RefCav trans TPD jumps I first noticed last week are still happening, so I continued my investigation into their cause.

Thinking these jumps were being caused by some frequency feedback from the IMC or the arms since they don't seem to line up with anything else in the PSL, I trended some IMC signals looking for similar behavior. Sure enough, several IMC electronics signals have trends that follow the jumps in power seen on the FSS TPD, including IMC-F. See final screenshot for a before/after comparison of these signals around last Tuesday's maintenance period when this change began. Also, in looking at more locking examples, I can say that the jumps start occurring towards the end of 'LOCKING_ALS' or during 'FIND_IR' states in main locking and persist until the next lockloss. Again, not sure that anything really needs to be done about this as it hasn't been causing problems that we've noticed so far, but it would be interesting to know why this change started and if it goes away for some reason, so I'll continue to keep an eye on it.

Images attached to this report
H1 CAL (CAL)
ibrahim.abouelfettouh@LIGO.ORG - posted 08:26, Monday 28 July 2025 - last comment - 11:41, Monday 28 July 2025(86013)
Broadband Calibration

Took a calibration measurement as the first thing for comissioning this morning (since we missed our window over the weekend)

BB Start: 1437750930

BB End: 1437751248

Calibration Monitor Attached

notification: end of measurement
notification: end of test
diag> save /ligo/groups/cal/H1/measurements/PCALY2DARM_BB/PCALY2DARM_BB_20250728T151520Z.xml
/ligo/groups/cal/H1/measurements/PCALY2DARM_BB/PCALY2DARM_BB_20250728T151520Z.xml saved
diag> quit
EXIT KERNEL

2025-07-28 08:20:30,384 bb measurement complete.
2025-07-28 08:20:30,384 bb output: /ligo/groups/cal/H1/measurements/PCALY2DARM_BB/PCALY2DARM_BB_20250728T151520Z.xml
2025-07-28 08:20:30,384 all measurements complete.
 

Images attached to this report
Comments related to this report
elenna.capote@LIGO.ORG - 08:38, Monday 28 July 2025 (86015)

This compares the broadband from last Thursday (blue reference) to today (red live).

Images attached to this comment
ibrahim.abouelfettouh@LIGO.ORG - 10:43, Monday 28 July 2025 (86019)

Broadband Re-run (Part of comissioning)

Start: 1437759350

End: 1437759670

notification: end of measurement
notification: end of test
diag> save /ligo/groups/cal/H1/measurements/PCALY2DARM_BB/PCALY2DARM_BB_20250728T173540Z.xml
/ligo/groups/cal/H1/measurements/PCALY2DARM_BB/PCALY2DARM_BB_20250728T173540Z.xml saved
diag> quit
EXIT KERNEL

2025-07-28 10:40:51,396 bb measurement complete.
2025-07-28 10:40:51,396 bb output: /ligo/groups/cal/H1/measurements/PCALY2DARM_BB/PCALY2DARM_BB_20250728T173540Z.xml
2025-07-28 10:40:51,397 all measurements complete.

 

Images attached to this comment
elenna.capote@LIGO.ORG - 11:41, Monday 28 July 2025 (86022)

The second measurement Ibrahim has posted here was performed when we were at double ESD bias. We corrected the ETMX drivealign L2L gain so that kappa TST would be 1. Even with this adjustment, there appears to be some frequency dependent difference between the measurements.

Images attached to this comment
H1 ISC (SQZ)
jennifer.wright@LIGO.ORG - posted 11:45, Friday 25 July 2025 - last comment - 12:06, Monday 28 July 2025(85986)
Putting Limits on OMC/Arm mis-match

Using my model for the propagation from OM2 to the OMC I discussed in alog #84255, I made a contour plot for the mode overlap (O(q1,q2 ))c between the mode propagated through cold OM2 to the OMC, q1 and the fundamental mode of the OMC, qdivided by the mode propagated through hot OM2 overlapped with the OMC mode, (O(q1,q2 )).

This is so I could comnpare it to measurements I made of the drop in optical gain, G when the curvature of OM2 was changed. Its hard to predict how much loss in total there is with the full interferomter locked but the optical gain change can tell us the change in optical loss between these two states which we assume to be due to mode-mis-match.

 

O/ O = (G/ G)2

 

In the plot I have used overlap ratio percentage, O % on the z axis, the real part of of the q I started with between OM1 and OM2 on the x-axis, and the imaginary part of this q on the y-axis.

O % = (O(q1,q2 ))/ (O(q1,q2 ))c × 100

 

The white line gives the square ratio of the optical gains measured in full-lock (alog #82559) for each of these states. The code to run this is in OM2_to_OMC_comp_full_IFO.m found at this respository on ligo gitlab.

The white line contains a contour of possible values of the q parameter between OM1 and OM2 for the full-locked state of the interferometer bar any changes since the end of January 2025 when I took these measurements.

 

Images attached to this report
Comments related to this report
jennifer.wright@LIGO.ORG - 12:06, Monday 28 July 2025 (86024)

The limit on mode-matching to the OMC with OM2 hot is 96.2% of the mode-matching to the OMC with OM2 cold. This means in full-lock our mode-matching should be better with a cold OM2.

The q value before OM2 should lie somewhere on this white curve in full-lock but we don't have any direct mode measurements with the interferometer in full-lock to constrain this yet.

H1 SUS
filiberto.clara@LIGO.ORG - posted 14:07, Tuesday 22 July 2025 - last comment - 09:25, Tuesday 29 July 2025(85922)
Top Sat Amps Modified: MC1, MC3, and ETMY (MO, RO, TMS)

WP 12696
ECR E2400330
Drawing D0901284-v5
Modified List T2500232

The following SUS SAT Amps were upgraded per ECR E2400330. Modification improves the whitening stage to reduce ADC noise from 0.05 to 10 Hz. The EY PUM and UIM SAT Amps were NOT upgraded.

Suspension Old New OSEM
ETMY MO S1100098 S1100088 F1F2F3SD
ETMY MO/RO S1100079 S1100083 RTLF/RTLF
ETMY RO S1100087 S1000281 F1F2F3SD
TMSY S1100172 S1100148 F1F2F3LF
TMSY S1100107 S1100172 RTSD
MC1 S1100128 S1100118 T1T2T3LF
MC1/MC3 S1000292 S1000287 RTSD/T1T2
MC3 S1000297 S1100119 T3LFRTSD

F. Clara, J. Kissel, O. Patane, M. Pirello

Comments related to this report
oli.patane@LIGO.ORG - 14:27, Tuesday 22 July 2025 (85924)

Once the new satamps were installed, I ran the script satampswap_bestpossible_filterupdate_ECR_E2400330.py to update the compensation filters for these suspensions. These 'best possible' compensation gains come from the tests Jeff did on each satamp before installation, which are found in /ligo/svncommon/SusSVN/sus/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Results/.

My input and the corresponding output is below:


oli.patane@cdsws27:/ligo/svncommon/SusSVN/sus/trunk/Common/PythonTools$ py satampswap_bestpossible_filterupdate_ECR_E2400330.py -o TMSY ETMY_M0_R0
All updated filters grabbed for TMSY
TMSY M1 F1 compensation filter updated to zpk([5.3],[0.0969],1,"n")
TMSY M1 F2 compensation filter updated to zpk([5.28],[0.0964],1,"n")
TMSY M1 F3 compensation filter updated to zpk([5.2],[0.095],1,"n")
TMSY M1 LF compensation filter updated to zpk([5.26],[0.096],1,"n")
TMSY M1 RT compensation filter updated to zpk([5.17],[0.0945],1,"n")
TMSY M1 SD compensation filter updated to zpk([5.26],[0.0961],1,"n")
write /opt/rtcds/userapps/release/sus/h1/filterfiles/H1SUSTMSY.txt
Done writing updated filters for TMSY

All updated filters grabbed for ETMY
ETMY R0 F1 compensation filter updated to zpk([5.2],[0.0951],1,"n")
ETMY R0 F2 compensation filter updated to zpk([5.2],[0.0951],1,"n")
ETMY R0 F3 compensation filter updated to zpk([5.25],[0.0959],1,"n")
ETMY R0 SD compensation filter updated to zpk([5.35],[0.098],1,"n")
ETMY M0 F1 compensation filter updated to zpk([5.31],[0.0971],1,"n")
ETMY M0 F2 compensation filter updated to zpk([5.27],[0.0965],1,"n")
ETMY M0 F3 compensation filter updated to zpk([5.22],[0.0955],1,"n")
ETMY M0 SD compensation filter updated to zpk([5.17],[0.0946],1,"n")
ETMY M0 LF compensation filter updated to zpk([5.2],[0.0951],1,"n")
ETMY M0 RT compensation filter updated to zpk([5.28],[0.0965],1,"n")
ETMY R0 LF compensation filter updated to zpk([5.29],[0.0967],1,"n")
ETMY R0 RT compensation filter updated to zpk([5.26],[0.0962],1,"n")
write /opt/rtcds/userapps/release/sus/h1/filterfiles/H1SUSETMY.txt
Done writing updated filters for ETMY

All done! Remember to double check and load in the filters for ['TMSY', 'ETMY_M0_R0']

oli.patane@cdsws27:/ligo/svncommon/SusSVN/sus/trunk/Common/PythonTools$ py satampswap_bestpossible_filterupdate_ECR_E2400330.py -o MC1 MC3
All updated filters grabbed for MC1
MC1 M1 RT compensation filter updated to zpk([5.13],[0.0937],1,"n")
MC1 M1 SD compensation filter updated to zpk([5.25],[0.096],1,"n")
MC1 M1 T1 compensation filter updated to zpk([5.26],[0.0962],1,"n")
MC1 M1 T2 compensation filter updated to zpk([5.18],[0.0947],1,"n")
MC1 M1 T3 compensation filter updated to zpk([5.32],[0.0972],1,"n")
MC1 M1 LF compensation filter updated to zpk([5.12],[0.0938],1,"n")
write /opt/rtcds/userapps/release/sus/h1/filterfiles/H1SUSMC1.txt
Done writing updated filters for MC1

All updated filters grabbed for MC3
MC3 M1 T3 compensation filter updated to zpk([5.32],[0.0972],1,"n")
MC3 M1 LF compensation filter updated to zpk([5.19],[0.0949],1,"n")
MC3 M1 RT compensation filter updated to zpk([5.35],[0.0979],1,"n")
MC3 M1 SD compensation filter updated to zpk([5.19],[0.0949],1,"n")
MC3 M1 T1 compensation filter updated to zpk([5.31],[0.097],1,"n")
MC3 M1 T2 compensation filter updated to zpk([5.24],[0.0958],1,"n")
write /opt/rtcds/userapps/release/sus/h1/filterfiles/H1SUSMC3.txt
Done writing updated filters for MC3

All done! Remember to double check and load in the filters for ['MC1', 'MC3']

After this I loaded in these new filters.

jeffrey.kissel@LIGO.ORG - 15:40, Monday 28 July 2025 (86037)
The serial numbers in Fil's and OLD and NEW columns are flip flopped in the main aLOG, LHO:85922.

Here's the corrected version with the serial number's columns flipped to reflect reality.

Suspension	Old         New	           OSEM
ETMY MO	        S1100088    S1100098       F1F2F3SD

ETMY MO/RO	S1100083    S1100079       RTLF/RTLF

ETMY RO	        S1000281    S1100087       F1F2F3SD

TMSY	        S1100148    S1100172       F1F2F3LF

TMSY	        S1100172    S1100107       RTSD

MC1	        S1100118    S1100128       T1T2T3LF

MC1/MC3	        S1000287    S1000292       RTSD/T1T2

MC3	        S1100119    S1000297       T3LFRTSD
jeffrey.kissel@LIGO.ORG - 15:47, Monday 28 July 2025 (86038)
Here's the characterization data and fit results for  S1100098 , assigned to ETMY M0's F1F2F3SD OSEMs (Fil refers to this as ETMY MO F1F2F3SD above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100098_ETMY_M0_F1F2F3SD_20250717.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
ETMY     M0       S1100098         CH1                F1           0.0971:5.31     120           zpk([5.31],[0.0971],1,"n")
                                   CH2	              F2           0.0965:5.27     120           zpk([5.27],[0.0965],1,"n")
                                   CH3	              F3           0.0955:5.22     120           zpk([5.22],[0.0955],1,"n")
                                   CH4	              SD           0.0946:5.17     120           zpk([5.17],[0.0946],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm, as it's not used in the compensation filter -- but also because the magnitude of the measurements didn't need me to adjust them; I was able to get a good phase and magnitude fit by just adjusting the zero frequency.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 15:51, Monday 28 July 2025 (86039)
Here's the characterization data and fit results for  S1100079 , assigned to ETMY M0/R0's LFRT/LFRT OSEMs (Fil refers to this as ETMY MO/RO RTLF/RTLF above -- note his typo in channel order).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100079_ETMY_M0R0_LFRTLFRT_20250717.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
ETMY     M0       S1100079	   CH1                LF           0.0951:5.20     120           zpk([5.20],[0.0951],1,"n")
         M0                        CH2                RT           0.0965:5.28     120           zpk([5.28],[0.0965],1,"n")
         R0                        CH3                LF           0.0967:5.29     120           zpk([5.29],[0.0967],1,"n")
         R0                        CH4                RT           0.0962:5.26     120           zpk([5.26],[0.0962],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm, as it's not used in the compensation filter -- but also because the magnitude of the measurements didn't need me to adjust them; I was able to get a good phase and magnitude fit by just adjusting the zero frequency.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 15:56, Monday 28 July 2025 (86040)
Here's the characterization data and fit results for  S1100087 , assigned to ETMY R0's F1F2F3SD OSEMs (Fil refers to this as ETMY RO F1F2F3SD above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100087_ETMY_R0_F1F2F3SD_20250717.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
ETMY     R0       S1100087         CH1                F1           0.0951:5.20     120           zpk([5.20],[0.0951],1,"n")
                                   CH2                F2           0.0951:5.20     120           zpk([5.20],[0.0951],1,"n")
                                   CH3                F3           0.0959:5.25     120           zpk([5.25],[0.0959],1,"n")
                                   CH4                SD           0.0980:5.35     120           zpk([5.35],[0.0980],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm, as it's not used in the compensation filter -- but also because the magnitude of the measurements didn't need me to adjust them; I was able to get a good phase and magnitude fit by just adjusting the zero frequency.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 08:38, Tuesday 29 July 2025 (86053)
Here's the characterization data and fit results for  S1100172 , assigned to TMSY M1's F1F2F3LF OSEMs (Fil refers to this as TMSY F1F2F3LF above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100172_TMSY_M1_F1F2F3LF_20250717.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
TMSY     M1       S1100172         CH1                F1           0.0969:5.30     120           zpk([5.30],[0.0969],1,"n")
                                   CH2                F2           0.0964:5.28     120           zpk([5.28],[0.0964],1,"n")
                                   CH3                F3           0.0950:5.20     120           zpk([5.20],[0.0950],1,"n")
                                   CH4                LF           0.0960:5.26     120           zpk([5.26],[0.0960],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 08:42, Tuesday 29 July 2025 (86054)
Here's the characterization data and fit results for  S1100107 , assigned to TMSY M1's RTSDxxxx OSEMs (Fil refers to this as TMSY RTSD above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100107_TMSY_M1_RTSDxxxx_20250717.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
TMSY     M1       S1100107         CH1                RT           0.0945:5.17     120           zpk([5.17],[0.0945],1,"n")
                                   CH2                SD           0.0961:5.26     120           zpk([5.26],[0.0961],1,"n")
                                   CH3                xx           0.0956:5.23     120           zpk([5.23],[0.0956],1,"n")
                                   CH4                xx           0.0957:5.24     120           zpk([5.24],[0.0957],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 09:14, Tuesday 29 July 2025 (86055)
Here's the characterization data and fit results for  S1100128 , assigned to MC1 M1's T1T2T3LF OSEMs (Fil refers to this as MC1 T1T2T3LF above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100128_MC1_M1_T1T2T3LF_20250717.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
MC1      M1       S1100128         CH1                T1           0.0962:5.26     120           zpk([5.26],[0.0962],1,"n")
                                   CH2                T2           0.0947:5.18     120           zpk([5.18],[0.0947],1,"n")
                                   CH3                T3           0.0972:5.32     120           zpk([5.32],[0.0972],1,"n")
                                   CH4                LF           0.0938:5.12     120           zpk([5.12],[0.0938],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 09:19, Tuesday 29 July 2025 (86057)
Here's the characterization data and fit results for  S1000292 , assigned to MC1/MC3 M1's RTSD/T1T2 OSEMs (Fil refers to this as MC1/MC3 RTSD/T1T2 above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1000292_MC1MC3_M1_RTSDT1T2_20250717.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
MC1      M1       S1000292         CH1                RT           0.0937:5.13     120           zpk([5.13],[0.0937],1,"n")
MC1      M1                        CH2                SD           0.0960:5.25     120           zpk([5.25],[0.0960],1,"n")
MC3      M1                        CH3                T1           0.0970:5.31     120           zpk([5.31],[0.0970],1,"n")
MC3      M1                        CH4                T2           0.0958:5.24     120           zpk([5.24],[0.0958],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 09:25, Tuesday 29 July 2025 (86058)
Here's the characterization data and fit results for  S1000297 , assigned to MC3 M1's T3LFRTSD OSEMs (Fil refers to this as MC3 T3LFRTSD above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1000297_MC3_M1_T3LFRTSD_20250721.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
MC3      M1       S1000297         CH1                T3           0.0972:5.32     120           zpk([5.32],[0.0972],1,"n")
                                   CH2                LF           0.0949:5.19     120           zpk([5.19],[0.0949],1,"n")
                                   CH3                RT           0.0979:5.35     120           zpk([5.35],[0.0979],1,"n")
                                   CH4                SD           0.0949:5.19     120           zpk([5.19],[0.0949],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm.
Non-image files attached to this comment
H1 SUS
oli.patane@LIGO.ORG - posted 12:54, Tuesday 22 July 2025 - last comment - 13:39, Tuesday 29 July 2025(85918)
Measuring SR3 OLG TFs to get DAMP filter compensation gains

Ivey used the ISO calibration measurements that I took earlier (85906) to calculate what the OSEMINF gains should be on SR3 (85907), and this script also calculates what it thinks the compensation gain in the DAMP filter bank should be.
The next step is to use OLG TFs to measure what values we would use in the DAMP filter bank to compensate for the change in OSEMINF gains, and we can compare them to the calculated values to see how close they are.

I took two sets of OLG measurements for SR3:
- a set with the nominal OSEMINF gains
    T1: 1.478
    T2: 0.942
    T3: 0.952
    LF: 1.302
    RT: 1.087
    SD: 1.290
- a set with the OSEMINF gains changed to the values in 85907
    T1: 3.213
    T2: 1.517
    T3: 1.494
    LF: 1.733
    RT: 1.494
    SD: 1.793

Measurement settings:
- SR3 in HEALTH_CHECK but with damping loops on
- SR3 damping nominal (all -0.5)
- HAM5 in ISOLATED

Nominal gain set:
/ligo/svncommon/SusSVN/sus/trunk/HLTS/H1/SR3/SAGM1/Data/2025-07-22_1700_H1SUSSR3_M1_WhiteNoise_{L,T,V,R,P,Y}_0p02to50Hz_OpenLoopGainTF.xml r12478

New gain set:
/ligo/svncommon/SusSVN/sus/trunk/HLTS/H1/SR3/SAGM1/Data/2025-07-22_1800_H1SUSSR3_M1_WhiteNoise_{L,T,V,R,P,Y}_0p02to50Hz_OpenLoopGainTF.xml r12478

Once I had taken these measurements, I exported txt files for each dof's OLG and used one of my scripts, /ligo/svncommon/SusSVN/sus/trunk/HLTS/Common/MatlabTools/divide_traces_tfs.m to plot the OLG for each dof to compare the traces between OSEMINF gain differences and then divide the traces and grab an average of that, which will be the compensation gain put in as a filter in the DAMP filter bank (plots). The values I got for the compensation gains are below:
    L: 0.740
    T: 0.732
    V: 0.548
    R: 0.550
    P: 0.628
    Y: 0.757

DOF OLTF measured and calculated DAMP Compensation gains ISO Calibration measurement calculated compensation gains (85907) Percent difference (%)
L 0.740 0.740 0.0
T 0.732 0.719 1.8
V 0.548 0.545 0.5
R 0.550 0.545 0.9
P 0.628 0.629 0.2
Y 0.757 0.740 2.3

 These are pretty similar to what my script had found them to be last time before the satamp swap (85288), as well as being very similar to the values that Ivey's script had calculated.
Maybe the accuracy from Ivey's script means that in the future we don't need to run the double sets of OLG transfer functions and can jsut use the values that the script gives.

Images attached to this report
Comments related to this report
oli.patane@LIGO.ORG - 13:00, Monday 28 July 2025 (86026)

The compensation gains have been loaded into the SR3 DAMP filter bank in FM7 as well as being updated in the estimator damp banks for P and Y. They have been loaded in but of course, are currrently left off for nominal operations since the OSEMINF gains haven't been updated yet

Images attached to this comment
oli.patane@LIGO.ORG - 13:39, Tuesday 29 July 2025 (86073)

The OSEMINF gains and these new DAMP compensating gains have been turned on together: 86070

H1 SUS
filiberto.clara@LIGO.ORG - posted 13:02, Tuesday 15 July 2025 - last comment - 15:19, Monday 28 July 2025(85770)
Top Sat Amps Modified: MC2/PR2/ETMX (MO, RO, UIM, and TMS)

WP 12675
WP 12676
ECR E2400330
Drawing D0901284-v5
Modified List T2500232

The following SUS SAT Amps were upgraded per ECR E2400330. Modification improves the whitening stage to reduce ADC noise from 0.05 to 10 Hz. The EX PUM SAT Amp was NOT upgraded. 

Suspension Old New OSEM
ETMX MO S1100128 S1100075 F1F2F3SD
ETMX MO/RO S1100079 S1100163 RTLF/RTLF
ETMX RO S1100149 S1100132 F1F2F3SD
ETMX UIM S1000297 S1100140 ULLLURLR
TMSX S1100098 S1100150 F1F2F3LF
TMSX S1000292 S1100058 RTSD
MC2 S1100107 S1100071 T1T2T3LF
MC2/PR2 S1100087 S1100147 RTSD/T1T2
PR2 S1100172 S1100121 T3LFRTSD


F. Clara,  J. Kissel

Comments related to this report
oli.patane@LIGO.ORG - 17:29, Thursday 24 July 2025 (85981)

As of 2025/07/25 00:00 UTC, the TMSX satamp box for F1/F2/F3/LF has been swapped from S1100150 to S1100122

See 85980 for more info

jeffrey.kissel@LIGO.ORG - 14:16, Monday 28 July 2025 (86028)
Here's the characterization data and fit results for  S1100075 , assigned to ETMX M0's F1F2F3SD OSEMs (Fil refers to this as ETMX MO F1F2F3SD).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100075_ETMX_M0_F1F2F3SD_20250710.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
ETMX     M0       S1100075         CH1                F1           0.0971:5.31     120           zpk([5.31],[0.0971],1,"n")
                                   CH2                F2           0.0973:5.33     120           zpk([5.33],[0.0973],1,"n")
                                   CH3                F3           0.0979:5.36     120           zpk([5.36],[0.0979],1,"n")
                                   CH4                SD           0.0953:5.21     120           zpk([5.21],[0.0953],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 discusses, I'm intentionally excluding the fit of transimpedance gain from the foton design string, and so I've stopped using the R_TIA_kOhm as a knob in my by-hand fitting of the zeros and poles. Hence, you'll find that from here on, R_TIA_kOhm will almost always be the default 120 kOhm value I've found that works with the measured data and changing only the zero:pole frequency.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 14:16, Monday 28 July 2025 (86029)
Here's the characterization data and fit results for  S1100163 , assigned to ETMX M0/R0's LFRT/LFRT OSEMs (Fil refers to this as ETMX MO/RO RTLF/RTLF above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100163_ETMX_M0R0_LFRTLFRT_20250710.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
ETMX     M0R0      S1100163        CH1                LF           0.0948:5.18     120           zpk([5.18],[0.0948],1,"n")
                                   CH2                RT           0.0954:5.21     120           zpk([5.21],[0.0954],1,"n")
                                   CH3                LF           0.0969:5.30     120           zpk([5.30],[0.0969],1,"n")
                                   CH4                RT           0.0947:5.17     120           zpk([5.17],[0.0947],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 14:33, Monday 28 July 2025 (86030)
Here's the characterization data and fit results for  S1100132 , assigned to ETMX R0's F1F2F3SD OSEMs (Fil refers to this as ETMX RO F1F2F3SD above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100132_ETMX_R0_F1F2F3SD_20250710.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
ETMX     R0        S1100132        CH1                F1           0.0943:5.17     120.75        zpk([5.17],[0.0943],1,"n")
                                   CH2                F2           0.0960:5.25     121.00        zpk([5.25],[0.0960],1,"n")
                                   CH3                F3           0.0963:5.28     121.25        zpk([5.28],[0.0963],1,"n")
                                   CH4                SD           0.0970:5.33     120.75        zpk([5.33],[0.0970],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

This sat amp actually needed some fit transimpedance gain, so I report it here. But, again, it's not used in the compensation filter.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 14:50, Monday 28 July 2025 (86031)
Here's the characterization data and fit results for  S1100140 , assigned to ETMX L1's ULLLURLR OSEMs (Fil refers to this as ETMX UIM ULLLURLR above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100140_ETMX_L1_ULLLURLR_20250715.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
ETMX     L1       S1100140         CH1                UL           0.0943:5.14     120.5         zpk([5.14],[0.0943],1,"n")
                                   CH2                LL           0.0965:5.26     120.5         zpk([5.26],[0.0965],1,"n")
                                   CH3                UR           0.0943:5.14     120.5         zpk([5.14],[0.0943],1,"n")
                                   CH4                LR           0.0961:5.24     120.5         zpk([5.24],[0.0961],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

Similar to S1100132, I found I needed to slightly adjust the transimpedance to get a good phase fit of the zero frequency while getting magnitude scale to the ~1.000 +/- 0.005 level. Again, this won't be used in the compensation filter.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 14:55, Monday 28 July 2025 (86032)
Here's the characterization data and fit results for  S1100122 , which -- per LHO:85981, LHO:85980 and after 2025-07-25, has been assigned to TMSX M1's F1F2F3LF OSEMs (Fil refers to this as just TMSX F1F2F3LF above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100122_TMSX_M1_F1F2F3LF_20250724.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
TMSX     M1       S1100122         CH1                F1           0.0962:5.26     120           zpk([5.26],[0.0962],1,"n")
                                   CH2                F2           0.0971:5.31     120           zpk([5.31],[0.0971],1,"n")
                                   CH3                F3           0.0957:5.24     120           zpk([5.24],[0.0957],1,"n")
                                   CH4                LF           0.0951:5.20     120           zpk([5.20],[0.0951],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 15:06, Monday 28 July 2025 (86033)
Here's the characterization data and fit results for  S1100058 , assigned to TMSX M1's RTSD OSEMs and CH3CH4 are not connected to any OSEM in-vacuum, hence the "xxxx" place holders (Fil refers to this as just TMSX RTSD above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100058_TMSX_M1_RTSDxxxx_20250708.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
TMSX     M1       S1100058         CH1                RT           0.0939:5.11     121           zpk([5.11],[0.0939],1,"n")
                                   CH2                SD           0.0960:5.25     120           zpk([5.25],[0.0960],1,"n")
                                   CH3                xx           0.0955:5.23     120           zpk([5.23],[0.0955],1,"n")
                                   CH4                xx           0.0961:5.25     120           zpk([5.25],[0.0961],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is (mostly) the default 120 kOhm, save for CH1.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 15:11, Monday 28 July 2025 (86034)
Here's the characterization data and fit results for  S1100071 , assigned to MC2 M1's T1T2T3LF OSEMs (Fil refers to this as just MC2 T1T2T3LF above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100071_MC2_M1_T1T2T3LF_20250710.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
MC2      M1       S1100071         CH1                T1           0.0977:5.34     120           zpk([5.34],[0.0977],1,"n")
                                   CH2                T2           0.0956:5.23     120           zpk([5.23],[0.0956],1,"n")
                                   CH3                T3           0.0948:5.18     120           zpk([5.18],[0.0948],1,"n")
                                   CH4                LF           0.0958:5.22     120           zpk([5.22],[0.0958],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 15:15, Monday 28 July 2025 (86035)
Here's the characterization data and fit results for  S1100147 , assigned to MC2/PR2 M1's RTSD/T1T2 OSEMs (Fil refers to this as just MC2/PR2 RTSD/T1T2 above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100147_MC2PR2_M1_RTSDT1T2_20250710.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
MC2      M1       S1100147         CH1                RT           0.0975:5.33     120           zpk([5.33],[0.0975],1,"n")
MC2      M1                        CH2                SD           0.0947:5.18     120           zpk([5.18],[0.0947],1,"n")
PR2      M1                        CH3                T1           0.0969:5.29     120           zpk([5.29],[0.0969],1,"n")
PR2      M1                        CH4                T2           0.0962:5.25     120           zpk([5.25],[0.0962],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm.
Non-image files attached to this comment
jeffrey.kissel@LIGO.ORG - 15:19, Monday 28 July 2025 (86036)
Here's the characterization data and fit results for  S1100121 , assigned to PR2 M1's T3LFRTSD OSEMs (Fil refers to this as just PR2 T3LFRTSD above).
The data was taken per methods described in T080062-v3.
The data was processed and fit using 
    ${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/
         plotresponse_S1100121_PR2_M1_T3LFRTSD_20250710.m

Explicitly, the fit to the whitening stage zero and pole, the transimpedance feedback resistor, and foton design string are
Optic    Stage    Serial_Number    Channel_Number     OSEM_Name    Zero_Pole_Hz    R_TIA_kOhm    Foton_Design
PR2      M1       S1100121         CH1                T3           0.0979:5.37     120           zpk([5.37],[0.0979],1,"n")
                                   CH2                LF           0.0967:5.29     120           zpk([5.29],[0.0967],1,"n")
                                   CH3                RT           0.0958:5.24     120           zpk([5.24],[0.0958],1,"n")
                                   CH4                SD           0.0969:5.31     120           zpk([5.31],[0.0969],1,"n")
  
The attached plot and machine readable .txt file version of the above table are also found in
${SusSVN}/trunk/electronicstesting/lho_electronics_testing/satamp/ECR_E2400330/Scripts/

As LHO:85626 and the above LHO:86028 discusses, R_TIA_kOhm is the default 120 kOhm.
Non-image files attached to this comment
Displaying reports 861-880 of 84442.Go to page Start 40 41 42 43 44 45 46 47 48 End