Displaying reports 66581-66600 of 83254.Go to page Start 3326 3327 3328 3329 3330 3331 3332 3333 3334 End
Reports until 01:02, Sunday 08 March 2015
H1 ISC (ISC)
gabriele.vajente@LIGO.ORG - posted 01:02, Sunday 08 March 2015 (17133)
Power fluctuation in full lock

During the last stretches of full lock,  powers have been remarkably stable, but still showing some residual fluctuation. Here I'm analyzing the correlation of those power fluctuation with residual angular motion. I compute the best linear combination of all the ASC error signals (WFS and QPD) and their squared value, to predict the power fluctuation. The results fit very well the power time variation. One general comment is that the largest contributions to the power fluctuations come from pitch residual motions. The MATLAB code is attached.

AS RF90

The first plot shows the real AS_RF90 power (in blue) and the best fit obtained from the ASC signals (red trace). The second plot is a zoom in time. Using the same algorithm that I developed in the non stationary noise studies, I obtain a ranking of the most relevant ASC signals. The full result in shown in the third figure. The most important channels are AS_B_RF36_I_PIT, AS_A_RF45_I_PIT and REFL_B_DC_PIT.  The first signal is used for SRM, the second one is the other quadrature of the DETM signal (maybe the demodulation phase is not well tuned for DETM?) . One important remark is that most of the dependencies are with the linear channels and not with the squared values, meaning that the actual alignment working point is not the optimal one (in that case one would expect only quadratic dependencies).

AS LF

As above, the plots 4 and 5 show the fit to the power fluctuation. Plot 6 gives the channel ranking. In this case the largest contributions come from: AS_A_RF45_I_PIT^2, AS_A_RF45_Q_PIT and AS_B_RF36_I_PIT.  In this case we have mostly a quadratic contribution, meaning that the alignment is better for this particular port.

POP LF

As above,  plot 7 shows the fit to the power fluctuation. Plot 8 gives the channel ranking. In this case the largest contributions come from POP_A_PIT and AS_B_RF36_PIT. The first channel is highly correlated with the PRM motion, and the second one is used for SRM.

XARM

As above, plot 9 shows the fit to the power fluctuation. Plot 10 gives the channel ranking. The largest contribution is the same as for POP LF: POP_A_PIT. This seems to indicate that most of the power fluctuations in the arms comes from fluctuations in the PRC.

Images attached to this report
Non-image files attached to this report
H1 ISC
evan.hall@LIGO.ORG - posted 00:49, Sunday 08 March 2015 (17132)
More ASC work

Stefan, Dan, Gabriele, Evan

Summary

Tonight we worked on making the ASC more robust, and the signals more decoupled.

Details

We are able to close the same loops as last night (LHO#17124), with the same issues:

  1. In order to engage cETM or PR2, these optics must be manually adjusted beforehand to bring the error signals close to zero.
  2. The PR2 and PRM loops seem to make the sideband buildups less stable.
  3. No matter what loops we close or what optics we touch, we cannot seem to improve the recycling gain (as measured by the arm buildups). Over the last few days, we seem to get about 26 W/W. However, we can seemingly improve the visibility (mainly by adjusting cETM) as seen in LSC-REFL_A_LF. So it seems that we can make more power enter the interferometer, but we cannot get it to circulate in the arms.

The goal for tonight was mainly to try fixing (1) and (2). For (2), Stefan worked on decoupling the POPA → PRM loop by applying a pitch step to PRC1, and then recording the resulting steps in the control signals of INP1, PRC1, PRC2, SRC1, and SRC2. These step sizes (normalized by the step in PRC1) are then put into the output matrix. This gave a noticeable decoupling of the loops.

For (1), we noticed that for every 0.1 µrad step in ETMX (pitch or yaw), PR2 required a step of 0.1 µrad in the same direction. Therefore, we are now experimenting with a new loop: REFLA9I + REFLB9I → ETMX + ETMY + 2×PR2. The factor of 2 was established empirically using the same method as above. The full cETM drive vector is −5.2 for PRM, 2.0 for PR2, 1 for ETMX, 1 for ETMY, −9.5 for SRM, 1.8 for SR2, and −0.15 for IM4, but we have not yet employed it successfully. It causes a very sudden unlock of the interferometer, whose cause we haven't pinned down yet.

Some notes about housekeeping:

  1. We rephased REFLA9I and REFLB9I by driving an 8 Hz line into PR2 pitch and putting all of that signal into the I phase.
  2. The turning off of the DRMI WFS and the top-stage suspension offloading is now handled in PREP_TR_CARM instead of CARM_ON_TR.
H1 ISC (ISC, PSL)
gabriele.vajente@LIGO.ORG - posted 15:52, Saturday 07 March 2015 (17131)
IMC longitudinal offset adjustment: no enough range!

Evan, Gabriele

We plugged the LSC-EXTRA_AO_2_EXC output into the excitation 1 of the MC board. In this way we could inject a 100 Hz line (100 counts amplitude) into the laser frequency and check the coupling to the IMC transmitted power.

As described in 17129, we used a script to compute in real time the transfer function from our laser frequency excitation to the IMC transmitted RIN. The attached plot shows that we got the expected linear dependency of the TF on the IMC locking servo. Unfortunately we don't have enough range in the MC offset to go to zero. We need about -15 V to go to zero coupling.

For the moment being, we left the offset adjusted to -10 V. This reduces the coupling of frequency to intensity noise by a factor 2.6

Images attached to this report
H1 IOO
gabriele.vajente@LIGO.ORG - posted 15:44, Saturday 07 March 2015 (17130)
IMC angular sensing matrix

This morning I measured the IMC angular sensing matrix, using the same script we used last night in full lock. The script is attached. I added to the list of signal the IMC transmitted power, just to see how large the coupling to RIN is. It turns out that for all angular lines, there is always good coherence of IMC transmission with all angular lines. This seems to indicate that the IMC is not very well aligned in the present configuration, intoducing an excess of RIN due to input jitter.

1109796196 1109796316 H1:SUS-MC1_M3_LOCK_P_EXC
1109796339 1109796459 H1:SUS-MC2_M3_LOCK_P_EXC
1109796482 1109796602 H1:SUS-MC3_M3_LOCK_P_EXC
1109796623 1109796743 H1:IMC-PZT_PIT_EXC

1109796832 1109796952 H1:SUS-MC1_M3_LOCK_P_EXC
1109796975 1109797095 H1:SUS-MC2_M3_LOCK_P_EXC
1109797117 1109797238 H1:SUS-MC3_M3_LOCK_P_EXC
1109797259 1109797379 H1:IMC-PZT_YAW_EXC

 

Pitch sensing matrix (abs)

Excitation: H1:SUS-MC1_M3_LOCK_P_EXC H1:SUS-MC2_M3_LOCK_P_EXC H1:SUS-MC3_M3_LOCK_P_EXC H1:IMC-PZT_YAW_EXC
Monitor channel: H1:SUS-MC1_M3_WIT_Y_DQ H1:SUS-MC2_M3_WIT_Y_DQ H1:SUS-MC3_M3_WIT_Y_DQ H1:IMC-PZT_YAW_OUT_DQ
H1:IMC-WFS_A_I_YAW_OUT_DQ 3.696414e+02 3.061484e+03 3.533718e+02 5.976158e+00
H1:IMC-WFS_B_I_YAW_OUT_DQ 4.455824e+02 4.345709e+02 4.161115e+02 2.648559e+01
H1:IMC-WFS_A_DC_YAW_OUT_DQ 1.042152e-01 8.690475e-02 9.141790e-02 2.336451e-03
H1:IMC-WFS_B_DC_YAW_OUT_DQ 1.674855e-01 4.350029e-01 1.492077e-01 5.357902e-04
H1:IMC-MC2_TRANS_YAW_OUT_DQ 3.081631e-03 7.946392e-03 3.053098e-03 2.193305e-06
H1:IMC-IM4_TRANS_YAW_OUT_DQ 1.713772e-03 1.209704e-02 4.963654e-04 6.413458e-06
H1:IMC-IM4_TRANS_SUM_OUT_DQ 2.359231e+00 1.977480e+01 2.686220e+00 4.085103e-03

Pitch coherence matrix

Excitation: H1:SUS-MC1_M3_LOCK_P_EXC H1:SUS-MC2_M3_LOCK_P_EXC H1:SUS-MC3_M3_LOCK_P_EXC H1:IMC-PZT_YAW_EXC
Monitor channel: H1:SUS-MC1_M3_WIT_Y_DQ H1:SUS-MC2_M3_WIT_Y_DQ H1:SUS-MC3_M3_WIT_Y_DQ H1:IMC-PZT_YAW_OUT_DQ
H1:IMC-WFS_A_I_YAW_OUT_DQ 0.869777 0.948594 0.830457 0.999963
H1:IMC-WFS_B_I_YAW_OUT_DQ 0.867195 0.942646 0.831500 0.999993
H1:IMC-WFS_A_DC_YAW_OUT_DQ 0.864768 0.936162 0.820782 0.999548
H1:IMC-WFS_B_DC_YAW_OUT_DQ 0.874447 0.948026 0.823632 0.995486
H1:IMC-MC2_TRANS_YAW_OUT_DQ 0.871487 0.949401 0.827857 0.996018
H1:IMC-IM4_TRANS_YAW_OUT_DQ 0.867652 0.948376 0.761663 0.999013
H1:IMC-IM4_TRANS_SUM_OUT_DQ 0.872150 0.947420 0.824094 0.396943

Pitch sensing matrix (complex)

Excitation: H1:SUS-MC1_M3_LOCK_P_EXC H1:SUS-MC2_M3_LOCK_P_EXC H1:SUS-MC3_M3_LOCK_P_EXC H1:IMC-PZT_YAW_EXC
Monitor channel: H1:SUS-MC1_M3_WIT_Y_DQ H1:SUS-MC2_M3_WIT_Y_DQ H1:SUS-MC3_M3_WIT_Y_DQ H1:IMC-PZT_YAW_OUT_DQ
H1:IMC-WFS_A_I_YAW_OUT_DQ 4.459577e+01 + -3.669414e+02i -1.996634e+03 + -2.320805e+03i -1.879244e+02 + -2.992592e+02i 5.880661e+00 + -1.064092e+00i
H1:IMC-WFS_B_I_YAW_OUT_DQ 5.306319e+01 + -4.424115e+02i -2.602883e+02 + -3.479969e+02i -2.355467e+02 + -3.430255e+02i 2.606789e+01 + -4.685228e+00i
H1:IMC-WFS_A_DC_YAW_OUT_DQ 1.130252e-02 + -1.036005e-01i 5.621075e-02 + 6.627810e-02i -5.307239e-02 + -7.443490e-02i -2.286895e-03 + 4.786584e-04i
H1:IMC-WFS_B_DC_YAW_OUT_DQ 1.795862e-02 + -1.665199e-01i -2.992772e-01 + -3.156907e-01i -8.665653e-02 + -1.214644e-01i -5.176168e-04 + 1.383617e-04i
H1:IMC-MC2_TRANS_YAW_OUT_DQ 1.854521e-04 + -3.076046e-03i 3.995685e-03 + 6.868744e-03i -1.790435e-03 + -2.473004e-03i 2.152887e-06 + -4.191235e-07i
H1:IMC-IM4_TRANS_YAW_OUT_DQ 1.813095e-04 + 1.704154e-03i -7.544133e-03 + -9.456444e-03i -1.952017e-04 + 4.563715e-04i 6.310659e-06 + -1.143692e-06i
H1:IMC-IM4_TRANS_SUM_OUT_DQ -4.775657e-01 + 2.310390e+00i 1.282324e+01 + 1.505347e+01i 1.318504e+00 + 2.340368e+00i -4.036933e-03 + 6.254901e-04i

Yaw sensing matrix (abs)

Excitation: H1:SUS-MC1_M3_LOCK_P_EXC H1:SUS-MC2_M3_LOCK_P_EXC H1:SUS-MC3_M3_LOCK_P_EXC H1:IMC-PZT_PIT_EXC
Monitor channel: H1:SUS-MC1_M3_WIT_P_DQ H1:SUS-MC2_M3_WIT_P_DQ H1:SUS-MC3_M3_WIT_P_DQ H1:IMC-PZT_PIT_OUT_DQ
H1:IMC-WFS_A_I_PIT_OUT_DQ 1.824749e+02 9.969352e+02 9.296137e+01 8.824289e+00
H1:IMC-WFS_B_I_PIT_OUT_DQ 2.089930e+02 1.633214e+02 1.684276e+02 3.478393e+01
H1:IMC-WFS_A_DC_PIT_OUT_DQ 3.358676e-02 1.675410e-03 2.499026e-02 5.706180e-03
H1:IMC-WFS_B_DC_PIT_OUT_DQ 2.348725e-02 3.278211e-02 1.059425e-02 1.922967e-03
H1:IMC-MC2_TRANS_PIT_OUT_DQ 1.085159e-02 1.349890e-02 8.725626e-03 6.492894e-06
H1:IMC-IM4_TRANS_PIT_OUT_DQ 2.917940e-03 1.666967e-02 2.089132e-03 1.232166e-06
H1:IMC-IM4_TRANS_SUM_OUT_DQ 2.401433e-01 1.461071e+00 2.081551e-01 1.118365e-02

Yaw coherence matrix

Excitation: H1:SUS-MC1_M3_LOCK_P_EXC H1:SUS-MC2_M3_LOCK_P_EXC H1:SUS-MC3_M3_LOCK_P_EXC H1:IMC-PZT_PIT_EXC
Monitor channel: H1:SUS-MC1_M3_WIT_P_DQ H1:SUS-MC2_M3_WIT_P_DQ H1:SUS-MC3_M3_WIT_P_DQ H1:IMC-PZT_PIT_OUT_DQ
H1:IMC-WFS_A_I_PIT_OUT_DQ 0.998794 0.999674 0.998379 0.999850
H1:IMC-WFS_B_I_PIT_OUT_DQ 0.998710 0.999385 0.998624 0.999997
H1:IMC-WFS_A_DC_PIT_OUT_DQ 0.998635 0.819492 0.998388 0.999944
H1:IMC-WFS_B_DC_PIT_OUT_DQ 0.998203 0.998185 0.997417 0.999615
H1:IMC-MC2_TRANS_PIT_OUT_DQ 0.998884 0.999698 0.999013 0.999613
H1:IMC-IM4_TRANS_PIT_OUT_DQ 0.998884 0.999685 0.998991 0.992295
H1:IMC-IM4_TRANS_SUM_OUT_DQ 0.992307 0.998904 0.992879 0.914613

Yaw sensing matrix (complex)

Excitation: H1:SUS-MC1_M3_LOCK_P_EXC H1:SUS-MC2_M3_LOCK_P_EXC H1:SUS-MC3_M3_LOCK_P_EXC H1:IMC-PZT_PIT_EXC
Monitor channel: H1:SUS-MC1_M3_WIT_P_DQ H1:SUS-MC2_M3_WIT_P_DQ H1:SUS-MC3_M3_WIT_P_DQ H1:IMC-PZT_PIT_OUT_DQ
H1:IMC-WFS_A_I_PIT_OUT_DQ 1.793732e+02 + 3.350152e+01i 9.213024e+02 + 3.808959e+02i 9.002523e+01 + 2.317919e+01i -8.696218e+00 + 1.497955e+00i
H1:IMC-WFS_B_I_PIT_OUT_DQ 2.046045e+02 + 4.260397e+01i 1.508551e+02 + 6.258276e+01i 1.623020e+02 + 4.501022e+01i -3.427992e+01 + 5.899923e+00i
H1:IMC-WFS_A_DC_PIT_OUT_DQ 3.297093e-02 + 6.402182e-03i 1.562560e-03 + 6.044878e-04i 2.419939e-02 + 6.237182e-03i -5.608380e-03 + 1.051930e-03i
H1:IMC-WFS_B_DC_PIT_OUT_DQ 2.309431e-02 + 4.278260e-03i 3.047612e-02 + 1.207776e-02i 1.025308e-02 + 2.666902e-03i -1.888483e-03 + 3.625377e-04i
H1:IMC-MC2_TRANS_PIT_OUT_DQ -1.066824e-02 + -1.986341e-03i -1.256634e-02 + -4.930250e-03i -8.460478e-03 + -2.134680e-03i -6.383825e-06 + 1.185096e-06i
H1:IMC-IM4_TRANS_PIT_OUT_DQ -2.875068e-03 + -4.983555e-04i -1.544016e-02 + -6.283254e-03i -2.027304e-03 + -5.044915e-04i 1.211130e-06 + -2.267084e-07i
H1:IMC-IM4_TRANS_SUM_OUT_DQ -2.307384e-01 + -6.654749e-02i -1.331904e+00 + -6.006321e-01i -1.954466e-01 + -7.161846e-02i 1.102574e-02 + -1.872702e-03i
H1 IOO (IOO, ISC)
gabriele.vajente@LIGO.ORG - posted 13:52, Saturday 07 March 2015 (17129)
A first attempt at optmizing IMC longitudinal offset

I added aline at 20 Hz on MC2_M3_L, amplitude 1000 counts. The line is very well visible in the IMC transmitted power. I used a modified version of my phase tuning script (attached) to plot a time series of the transfer function PSL-ISS_SECONDLOOP_SUM14_REL_OUT_DQ over SUS-MC2_M3_LOCK_L_EXC, which should be zero when the IMC is locked on top of the resonace.

However, as visible in the attached plot (both real and imaginary part of the TF over time, it's ot possible to zero the transfer function, but basically only to rotate the phase. My guess is that the longitudinal actuation has a too large coupling to angles, that in turn generate intensity noise. We should repeat this measurement with a frequency line.

Images attached to this report
Non-image files attached to this report
H1 CDS (DAQ)
david.barker@LIGO.ORG - posted 10:36, Saturday 07 March 2015 (17128)
CDS model and DAQ restart report, Friday 6th March 2015

model restarts logged for Fri 06/Mar/2015
2015_03_06 02:14 h1fw1
2015_03_06 15:43 h1fw0

both unexpected restarts.

H1 ISC (ISC)
gabriele.vajente@LIGO.ORG - posted 03:54, Saturday 07 March 2015 (17127)
Full lock ASC sensing matrix pitch

Sensing matrix (abs)

Excitation: H1:ASC-INP1_P_EXC H1:ASC-PRC1_P_EXC H1:ASC-PRC2_P_EXC H1:ASC-MICH_P_EXC H1:ASC-SRC1_P_EXC H1:ASC-SRC2_P_EXC H1:ASC-DHARD_P_EXC H1:ASC-CHARD_P_EXC
Monitor channel: H1:ASC-INP1_P_OUT_DQ H1:ASC-PRC1_P_OUT_DQ H1:ASC-PRC2_P_OUT_DQ H1:ASC-MICH_P_OUT_DQ H1:ASC-SRC1_P_OUT_DQ H1:ASC-SRC2_P_OUT_DQ H1:ASC-DHARD_P_OUT_DQ H1:ASC-CHARD_P_OUT_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ 3.083490e-07 1.144743e-06 2.919830e-06 4.942637e-07 1.452438e-06 2.619617e-06 1.325017e-07 3.567395e-08
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ 1.009171e-02 4.936903e-02 2.357671e-01 3.996264e-02 1.540003e-02 6.004689e-02 4.894228e-04 1.844368e-04
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ 4.073150e-03 2.588899e-02 8.040688e-02 1.807913e-02 4.705937e-03 2.425972e-02 1.510983e-04 8.148122e-05
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 1.111965e-03 3.486822e-03 1.294388e-02 3.245946e-03 3.223794e-03 6.192785e-03 6.431043e-04 6.513617e-04
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ 2.046050e-03 1.014683e-02 2.494759e-02 3.592855e-03 1.044098e-02 1.778291e-02 1.953485e-03 1.180374e-03
H1:ASC-AS_B_DC_PIT_OUT_DQ 9.115051e-08 2.782044e-07 2.338714e-06 1.529549e-07 1.384706e-06 1.389544e-06 1.099927e-07 3.606211e-08
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ 4.145453e-03 2.041296e-02 8.112171e-02 2.039253e-02 1.801183e-02 4.186856e-02 4.951289e-04 1.923841e-04
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ 1.162469e-02 3.336087e-02 1.910910e-01 2.897883e-02 8.101623e-03 5.219472e-03 1.961022e-04 7.268414e-05
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ 5.523491e-04 8.440912e-04 7.427538e-03 2.384657e-03 2.499549e-03 2.408958e-03 3.925227e-04 1.521333e-04
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 1.621527e-03 1.015638e-03 1.189498e-02 1.894740e-03 9.196098e-03 5.479858e-03 1.033636e-03 2.427369e-03
H1:ASC-REFL_A_DC_PIT_OUT_DQ 3.560505e-05 3.297917e-06 1.537390e-06 7.235049e-08 6.936441e-08 8.141532e-08 1.268757e-08 1.048516e-07
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 4.920824e-01 5.936572e-02 1.752261e-01 4.753618e-03 8.913130e-04 8.708666e-04 6.157735e-05 4.717546e-04
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 3.291911e-02 8.592700e-03 3.766853e-02 7.920284e-04 1.131240e-04 7.150635e-04 2.417645e-05 1.533514e-04
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ 1.718190e-01 6.676713e-03 4.784160e-02 1.643632e-03 9.462730e-04 7.296060e-03 8.634951e-06 3.089538e-04
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ 4.743743e-02 5.443385e-03 4.440532e-02 4.378829e-03 8.734244e-04 2.998522e-03 2.216412e-05 9.758485e-05
H1:ASC-REFL_B_DC_PIT_OUT_DQ 3.630905e-05 1.878011e-06 2.113448e-06 8.611104e-08 2.668102e-08 3.471210e-08 5.648343e-09 4.677509e-09
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ 4.488839e-01 1.740580e-02 1.126740e-01 2.089294e-03 5.812146e-04 2.218312e-03 4.747062e-05 2.814405e-04
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ 1.692003e-01 6.649856e-03 2.787750e-02 3.839017e-04 1.763532e-04 4.591376e-04 3.989076e-06 9.892931e-05
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ 1.776931e-01 2.537226e-02 3.602318e-02 2.016099e-03 1.856591e-04 3.599292e-03 2.809717e-05 3.280684e-04
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ 1.904613e-02 5.612985e-03 7.555751e-03 2.555992e-03 8.964460e-04 2.874098e-03 7.123919e-06 8.146436e-05
H1:ASC-POP_A_PIT_OUT_DQ 1.176313e-07 4.458330e-07 8.274772e-07 2.594225e-08 7.359085e-09 4.204759e-09 2.893286e-10 5.019974e-09
H1:ASC-POP_B_PIT_OUT_DQ 1.462446e-07 5.225394e-07 2.747699e-07 8.759590e-09 3.629195e-09 2.620867e-09 3.364314e-10 3.340155e-09

Coherence matrix

Excitation: H1:ASC-INP1_P_EXC H1:ASC-PRC1_P_EXC H1:ASC-PRC2_P_EXC H1:ASC-MICH_P_EXC H1:ASC-SRC1_P_EXC H1:ASC-SRC2_P_EXC H1:ASC-DHARD_P_EXC H1:ASC-CHARD_P_EXC
Monitor channel: H1:ASC-INP1_P_OUT_DQ H1:ASC-PRC1_P_OUT_DQ H1:ASC-PRC2_P_OUT_DQ H1:ASC-MICH_P_OUT_DQ H1:ASC-SRC1_P_OUT_DQ H1:ASC-SRC2_P_OUT_DQ H1:ASC-DHARD_P_OUT_DQ H1:ASC-CHARD_P_OUT_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ 0.842596 0.977886 0.965931 0.975595 0.999108 0.992553 0.994846 0.349682
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ 0.946523 0.992638 0.992299 0.999337 0.983182 0.994849 0.985893 0.467179
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ 0.885832 0.989814 0.991665 0.998852 0.977769 0.987006 0.972644 0.285157
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 0.914833 0.968299 0.963553 0.993281 0.997222 0.993937 0.997682 0.886040
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ 0.859677 0.970701 0.954542 0.960983 0.998429 0.993037 0.998935 0.751817
H1:ASC-AS_B_DC_PIT_OUT_DQ 0.321544 0.884705 0.967308 0.908797 0.999596 0.994055 0.996648 0.451122
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ 0.750983 0.992819 0.973803 0.994226 0.995921 0.994185 0.993811 0.395568
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ 0.945920 0.981826 0.988143 0.995395 0.943165 0.593777 0.951807 0.215149
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ 0.886304 0.751647 0.923617 0.988048 0.996060 0.982425 0.997854 0.393172
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 0.850567 0.212435 0.845161 0.903738 0.997967 0.938270 0.996016 0.952700
H1:ASC-REFL_A_DC_PIT_OUT_DQ 0.985522 0.822630 0.079597 0.326208 0.024571 0.051059 0.043676 0.096333
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 0.999495 0.745440 0.991509 0.581084 0.216329 0.044272 0.086911 0.249591
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 0.915875 0.637567 0.970091 0.489305 0.031496 0.372920 0.097872 0.179574
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ 0.998537 0.428961 0.973404 0.608736 0.697598 0.873857 0.015387 0.543645
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ 0.980092 0.918974 0.976004 0.930231 0.797800 0.764369 0.630891 0.752446
H1:ASC-REFL_B_DC_PIT_OUT_DQ 0.997478 0.715646 0.387607 0.343336 0.010332 0.010410 0.039738 0.001099
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ 0.999790 0.624349 0.996868 0.675393 0.558339 0.823706 0.479562 0.665490
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ 0.999215 0.729526 0.983464 0.290106 0.273340 0.337866 0.021754 0.361151
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ 0.999092 0.964592 0.989265 0.898348 0.206883 0.811351 0.473603 0.878144
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ 0.993238 0.938917 0.677027 0.730587 0.914857 0.844002 0.242257 0.685366
H1:ASC-POP_A_PIT_OUT_DQ 0.992082 0.999784 0.999253 0.999186 0.909857 0.668808 0.581516 0.971856
H1:ASC-POP_B_PIT_OUT_DQ 0.991770 0.999599 0.983120 0.992675 0.627418 0.610812 0.489341 0.855274

Sensing matrix (complex)

Excitation: H1:ASC-INP1_P_EXC H1:ASC-PRC1_P_EXC H1:ASC-PRC2_P_EXC H1:ASC-MICH_P_EXC H1:ASC-SRC1_P_EXC H1:ASC-SRC2_P_EXC H1:ASC-DHARD_P_EXC H1:ASC-CHARD_P_EXC
Monitor channel: H1:ASC-INP1_P_OUT_DQ H1:ASC-PRC1_P_OUT_DQ H1:ASC-PRC2_P_OUT_DQ H1:ASC-MICH_P_OUT_DQ H1:ASC-SRC1_P_OUT_DQ H1:ASC-SRC2_P_OUT_DQ H1:ASC-DHARD_P_OUT_DQ H1:ASC-CHARD_P_OUT_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ -3.024548e-07 + -6.000168e-08i -1.142106e-06 + 7.764893e-08i -2.763255e-06 + -9.433063e-07i -2.888889e-07 + 4.010484e-07i 1.407714e-06 + -3.576591e-07i 2.608959e-06 + -2.360641e-07i -1.216899e-07 + 5.242402e-08i -1.672444e-08 + -3.151069e-08i
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ -6.004168e-03 + -8.111265e-03i -4.923470e-02 + 3.639388e-03i -1.991268e-01 + -1.262324e-01i -2.810927e-02 + 2.840566e-02i -1.378242e-02 + -6.870641e-03i -5.921334e-02 + -9.970425e-03i 3.695230e-04 + 3.209166e-04i -8.124790e-05 + 1.655769e-04i
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ 6.136053e-04 + -4.026666e-03i -1.724836e-02 + -1.930633e-02i 2.960292e-02 + -7.475917e-02i -1.499848e-02 + 1.009458e-02i -4.119934e-03 + -2.274199e-03i 2.335446e-02 + 6.565284e-03i -1.510477e-04 + 3.908513e-06i 7.559458e-05 + -3.040802e-05i
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 5.952670e-04 + 9.392147e-04i 3.249254e-03 + -1.265020e-03i 1.150423e-02 + 5.932689e-03i 2.155553e-03 + -2.426883e-03i -2.452404e-03 + 2.092501e-03i -5.675709e-03 + 2.477278e-03i 5.419130e-04 + -3.462853e-04i -1.433052e-04 + 6.354020e-04i
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ -1.909604e-03 + -7.346653e-04i -9.239894e-03 + 4.193151e-03i -2.471804e-02 + 3.376491e-03i -1.297035e-03 + 3.350568e-03i 8.994345e-03 + -5.302441e-03i 1.703536e-02 + -5.101816e-03i -1.703017e-03 + 9.569935e-04i 1.017517e-04 + -1.175981e-03i
H1:ASC-AS_B_DC_PIT_OUT_DQ -9.033187e-08 + -1.218885e-08i 1.049920e-07 + 2.576322e-07i -2.320654e-06 + 2.900827e-07i 1.376721e-07 + -6.664548e-08i -1.355705e-06 + 2.819143e-07i 1.373512e-06 + 2.104725e-07i 1.025743e-07 + -3.971032e-08i 3.583744e-08 + -4.019185e-09i
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ -1.019495e-03 + -4.018135e-03i 1.447408e-02 + -1.439410e-02i 5.455060e-02 + -6.004135e-02i -1.360423e-02 + 1.519145e-02i 1.797817e-02 + 1.100761e-03i -4.074184e-02 + -9.647727e-03i -4.660963e-04 + -1.670536e-04i -1.916837e-04 + -1.640179e-05i
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ -1.014247e-02 + -5.680121e-03i -3.240162e-02 + 7.942456e-03i -1.705241e-01 + -8.623975e-02i -1.867226e-02 + 2.216121e-02i -6.993700e-03 + -4.089553e-03i -5.200696e-03 + 4.423131e-04i 1.279625e-04 + 1.485991e-04i 4.128152e-05 + 5.982324e-05i
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ -2.910261e-04 + -4.694606e-04i -8.429875e-04 + 4.315221e-05i -2.535273e-03 + -6.981454e-03i -1.826117e-03 + 1.533586e-03i 2.171146e-03 + -1.238495e-03i 1.097244e-04 + -2.406458e-03i -3.492468e-04 + 1.791668e-04i -1.443156e-04 + -4.814099e-05i
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 1.230587e-03 + -1.055939e-03i 6.551065e-04 + 7.761156e-04i -5.968688e-03 + 1.028909e-02i 1.731034e-03 + -7.704293e-04i -8.825895e-03 + 2.582980e-03i 3.723523e-03 + 4.020475e-03i 9.833389e-04 + -3.185097e-04i 1.820549e-03 + -1.605529e-03i
H1:ASC-REFL_A_DC_PIT_OUT_DQ 3.556509e-05 + -1.686444e-06i -2.524453e-06 + 2.122120e-06i -1.156031e-06 + 1.013489e-06i -6.598642e-08 + 2.967129e-08i -3.343588e-08 + -6.077388e-08i 6.117673e-08 + -5.372022e-08i -7.102079e-09 + 1.051356e-08i -9.496058e-08 + 4.445623e-08i
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 4.918521e-01 + -1.505496e-02i -5.492416e-02 + 2.253053e-02i -1.744630e-01 + -1.633639e-02i -3.700791e-03 + 2.983460e-03i -4.672292e-04 + -7.590361e-04i -3.084893e-04 + -8.143973e-04i 6.048928e-05 + 1.152462e-05i 4.563471e-04 + -1.195815e-04i
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 3.288559e-02 + -1.485062e-03i -8.570950e-03 + 6.109983e-04i -3.753427e-02 + -3.177567e-03i -5.361465e-04 + 5.829716e-04i 4.453154e-06 + -1.130363e-04i -7.094357e-04 + 8.953677e-05i 2.370340e-05 + -4.759130e-06i 1.498090e-04 + -3.277100e-05i
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ -1.717439e-01 + 5.080024e-03i -5.648190e-03 + 3.560401e-03i -4.769500e-02 + -3.742314e-03i -1.313616e-03 + 9.878956e-04i -9.137138e-04 + 2.460885e-04i 5.968473e-03 + -4.196406e-03i -7.612034e-06 + 4.076680e-06i -2.847650e-04 + 1.198387e-04i
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ -4.743716e-02 + 1.592092e-04i -3.591975e-03 + 4.090006e-03i -4.437064e-02 + -1.754794e-03i -2.895197e-04 + 4.369247e-03i -7.990828e-04 + 3.526144e-04i -1.710402e-03 + -2.462856e-03i 2.029484e-05 + 8.908857e-06i -8.450830e-05 + 4.879703e-05i
H1:ASC-REFL_B_DC_PIT_OUT_DQ 3.626411e-05 + -1.805850e-06i -1.592793e-06 + 9.949552e-07i 2.044958e-06 + 5.336766e-07i 6.650968e-08 + -5.469528e-08i -5.997581e-09 + -2.599819e-08i -2.519817e-08 + 2.387429e-08i -4.991200e-09 + -2.644183e-09i 8.266320e-10 + -4.603886e-09i
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ -4.486942e-01 + 1.304767e-02i -1.732077e-03 + -1.731940e-02i -1.126622e-01 + -1.628668e-03i -1.654593e-03 + 1.275724e-03i 1.157404e-04 + -5.695740e-04i -1.404320e-03 + 1.717205e-03i -4.053754e-05 + 2.470159e-05i 2.155245e-04 + -1.809916e-04i
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ -1.691391e-01 + 4.549866e-03i 1.835545e-03 + -6.391507e-03i -2.787626e-02 + -2.639533e-04i -3.442336e-04 + 1.699520e-04i 1.162836e-04 + -1.325842e-04i -9.996080e-05 + 4.481241e-04i -2.451886e-06 + 3.146583e-06i 8.992282e-05 + -4.124190e-05i
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ 1.775932e-01 + -5.958107e-03i -1.857046e-02 + 1.728843e-02i -3.598851e-02 + -1.580115e-03i -6.261681e-04 + 1.916395e-03i 1.838827e-04 + -2.562165e-05i -3.589322e-03 + 2.677149e-04i 2.585210e-05 + -1.100545e-05i -2.777937e-04 + 1.745267e-04i
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ 1.903014e-02 + -7.802214e-04i -5.143272e-03 + 2.247744e-03i -3.675366e-03 + -6.601595e-03i -1.870535e-03 + -1.741894e-03i 4.785762e-04 + -7.580107e-04i -1.035418e-03 + 2.681110e-03i -7.082819e-06 + -7.641297e-07i -6.915671e-05 + 4.305569e-05i
H1:ASC-POP_A_PIT_OUT_DQ -1.176213e-07 + 1.532806e-09i -3.707889e-07 + 2.475533e-07i -8.273338e-07 + -1.540561e-08i -1.898396e-08 + 1.768077e-08i -5.828878e-09 + -4.492251e-09i -4.203306e-09 + -1.105479e-10i -9.883953e-11 + 2.719224e-10i 4.126631e-09 + -2.858506e-09i
H1:ASC-POP_B_PIT_OUT_DQ -1.459867e-07 + 8.681662e-09i -4.213083e-07 + 3.091063e-07i 2.747666e-07 + 1.354293e-09i 5.754972e-09 + -6.603841e-09i -3.320451e-09 + 1.464809e-09i 1.765425e-10 + 2.614915e-09i 7.935098e-11 + -3.269396e-10i -2.511666e-09 + 2.201856e-09i
GPS Times: 1109761340 1109761400 H1:ASC-INP1_P_EXC 1109761421 1109761481 H1:ASC-PRC1_P_EXC 1109761502 1109761562 H1:ASC-PRC2_P_EXC 1109761584 1109761644 H1:ASC-MICH_P_EXC 1109761665 1109761725 H1:ASC-SRC1_P_EXC 1109761746 1109761807 H1:ASC-SRC2_P_EXC 1109761828 1109761888 H1:ASC-DHARD_P_EXC 1109761909 1109761969 H1:ASC-CHARD_P_EXC
H1 ISC (ISC)
gabriele.vajente@LIGO.ORG - posted 03:43, Saturday 07 March 2015 (17126)
Full lock ASC sensing matrix yaw

Sensing matrix (abs)

Excitation: H1:ASC-INP1_Y_EXC H1:ASC-PRC1_Y_EXC H1:ASC-PRC2_Y_EXC H1:ASC-MICH_Y_EXC H1:ASC-SRC1_Y_EXC H1:ASC-SRC2_Y_EXC H1:ASC-DHARD_Y_EXC H1:ASC-CHARD_Y_EXC
Monitor channel: H1:ASC-INP1_Y_OUT_DQ H1:ASC-PRC1_Y_OUT_DQ H1:ASC-PRC2_Y_OUT_DQ H1:ASC-MICH_Y_OUT_DQ H1:ASC-SRC1_Y_OUT_DQ H1:ASC-SRC2_Y_OUT_DQ H1:ASC-DHARD_Y_OUT_DQ H1:ASC-CHARD_Y_OUT_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ 4.031685e-07 5.392346e-07 8.311928e-06 2.881588e-06 1.004452e-06 3.301726e-06 1.667395e-07 1.524016e-08
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 1.991316e-02 3.858034e-02 2.998611e-01 3.219276e-01 1.353022e-02 2.613919e-02 5.956869e-05 3.014351e-06
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ 1.013659e-02 8.320306e-03 5.906850e-02 1.600886e-01 1.564192e-03 3.046164e-02 2.631369e-04 4.566430e-05
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ 1.661431e-03 2.121179e-03 6.452280e-03 2.210928e-02 1.743886e-03 6.018634e-03 9.055341e-04 2.395158e-04
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ 3.612030e-03 3.187511e-03 6.402889e-02 1.849432e-02 6.428634e-03 1.990436e-02 1.930394e-03 4.172696e-04
H1:ASC-AS_B_DC_YAW_OUT_DQ 1.757336e-07 6.941324e-07 8.164861e-06 4.630952e-07 1.081163e-06 5.167964e-07 1.199717e-07 1.471614e-08
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ 4.313914e-03 9.863339e-03 3.969614e-02 9.370721e-02 2.542824e-03 2.871498e-02 2.469401e-04 3.410662e-05
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 2.080965e-02 2.235516e-02 1.705056e-01 1.804781e-01 6.698143e-03 2.710248e-02 3.950121e-05 2.041372e-05
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 1.020778e-03 9.954585e-04 6.219793e-03 1.549895e-02 1.600995e-03 2.809151e-03 6.968702e-04 2.112154e-04
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ 1.365308e-03 6.034298e-04 2.545113e-02 1.160158e-02 6.862895e-03 3.255676e-03 1.580237e-03 3.007709e-04
H1:ASC-REFL_A_DC_YAW_OUT_DQ 5.887914e-05 3.642079e-06 4.864500e-06 8.840696e-07 5.707180e-08 1.118971e-07 1.920320e-09 1.760073e-08
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ 9.125244e-01 4.685791e-02 1.433883e-01 2.719587e-02 3.398776e-04 3.071677e-03 9.913482e-06 3.254621e-04
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ 1.119344e-01 4.052422e-03 3.017529e-02 2.788209e-03 7.235137e-05 6.180180e-04 1.174930e-05 8.308296e-05
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ 3.226940e-01 1.826235e-02 2.025763e-01 5.645713e-02 1.924779e-03 8.484405e-03 1.656515e-05 2.711756e-04
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ 7.134476e-02 8.995083e-03 1.064620e-01 2.517365e-02 2.447210e-03 9.818037e-03 4.068771e-06 1.069372e-04
H1:ASC-REFL_B_DC_YAW_OUT_DQ 7.072096e-05 1.609598e-06 3.478367e-06 3.256197e-07 4.663900e-08 6.349670e-08 1.569532e-09 8.590143e-09
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 7.147608e-01 1.396809e-02 2.839755e-01 4.478032e-02 1.249494e-03 3.379724e-03 7.465704e-06 3.472900e-04
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 2.724818e-01 5.678733e-03 9.150944e-02 1.270724e-02 3.721091e-04 9.763051e-04 2.295483e-06 6.932303e-05
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ 2.846739e-01 2.667722e-02 5.800374e-02 9.514586e-03 4.868248e-04 1.040630e-03 1.751774e-05 3.269201e-04
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ 2.082370e-02 6.591069e-03 3.520480e-02 1.409508e-02 4.185252e-04 1.431846e-03 5.608350e-06 6.566866e-05
H1:ASC-POP_A_YAW_OUT_DQ 2.329535e-07 4.373996e-07 7.104547e-07 1.840680e-07 3.540810e-09 1.446617e-08 3.051640e-10 4.730231e-09
H1:ASC-POP_B_YAW_OUT_DQ 1.624792e-07 3.356867e-07 4.080737e-07 1.022386e-07 1.532934e-09 7.861499e-09 2.480083e-10 4.031364e-09

Coherence matrix

Excitation: H1:ASC-INP1_Y_EXC H1:ASC-PRC1_Y_EXC H1:ASC-PRC2_Y_EXC H1:ASC-MICH_Y_EXC H1:ASC-SRC1_Y_EXC H1:ASC-SRC2_Y_EXC H1:ASC-DHARD_Y_EXC H1:ASC-CHARD_Y_EXC
Monitor channel: H1:ASC-INP1_Y_OUT_DQ H1:ASC-PRC1_Y_OUT_DQ H1:ASC-PRC2_Y_OUT_DQ H1:ASC-MICH_Y_OUT_DQ H1:ASC-SRC1_Y_OUT_DQ H1:ASC-SRC2_Y_OUT_DQ H1:ASC-DHARD_Y_OUT_DQ H1:ASC-CHARD_Y_OUT_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ 0.877995 0.936322 0.964207 0.964613 0.999556 0.999214 0.951342 0.366137
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 0.958806 0.981377 0.975624 0.999814 0.994314 0.988471 0.880617 0.004955
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ 0.952277 0.901434 0.820429 0.999562 0.922665 0.998616 0.942394 0.584411
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ 0.933718 0.890399 0.328643 0.993219 0.993367 0.998007 0.996696 0.937408
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ 0.935617 0.830683 0.921302 0.935596 0.996761 0.998303 0.986227 0.831517
H1:ASC-AS_B_DC_YAW_OUT_DQ 0.514456 0.977653 0.982686 0.461225 0.999363 0.990782 0.973868 0.622839
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ 0.813502 0.951416 0.598040 0.997792 0.952954 0.998459 0.958816 0.515462
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 0.961435 0.962455 0.948682 0.998859 0.979631 0.993586 0.877446 0.239719
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 0.922720 0.667963 0.402587 0.991521 0.995724 0.994284 0.996490 0.945958
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ 0.854440 0.083537 0.587561 0.874576 0.997187 0.978271 0.980857 0.735839
H1:ASC-REFL_A_DC_YAW_OUT_DQ 0.994522 0.620990 0.135750 0.010622 0.009686 0.281819 0.009492 0.055766
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ 0.998993 0.839166 0.090888 0.447572 0.049205 0.759129 0.167374 0.930424
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ 0.951957 0.447989 0.119508 0.166774 0.045552 0.587132 0.703928 0.839773
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ 0.997771 0.785327 0.607030 0.929066 0.882284 0.937111 0.684537 0.984272
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ 0.945654 0.815915 0.738725 0.882462 0.976567 0.993592 0.537407 0.991905
H1:ASC-REFL_B_DC_YAW_OUT_DQ 0.999068 0.742474 0.031397 0.008371 0.031052 0.167697 0.038491 0.070031
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 0.999382 0.461010 0.448559 0.823345 0.647265 0.888297 0.323946 0.987841
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 0.999599 0.643543 0.459728 0.772427 0.553919 0.841013 0.243502 0.955394
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ 0.998420 0.953713 0.271192 0.563421 0.766779 0.211379 0.886829 0.998096
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ 0.988042 0.865125 0.415478 0.635645 0.289426 0.728005 0.838418 0.991842
H1:ASC-POP_A_YAW_OUT_DQ 0.995662 0.999210 0.988526 0.943128 0.435541 0.992223 0.871966 0.993443
H1:ASC-POP_B_YAW_OUT_DQ 0.996257 0.999320 0.971955 0.940216 0.319431 0.991293 0.911992 0.996432

Sensing matrix (complex)

Excitation: H1:ASC-INP1_Y_EXC H1:ASC-PRC1_Y_EXC H1:ASC-PRC2_Y_EXC H1:ASC-MICH_Y_EXC H1:ASC-SRC1_Y_EXC H1:ASC-SRC2_Y_EXC H1:ASC-DHARD_Y_EXC H1:ASC-CHARD_Y_EXC
Monitor channel: H1:ASC-INP1_Y_OUT_DQ H1:ASC-PRC1_Y_OUT_DQ H1:ASC-PRC2_Y_OUT_DQ H1:ASC-MICH_Y_OUT_DQ H1:ASC-SRC1_Y_OUT_DQ H1:ASC-SRC2_Y_OUT_DQ H1:ASC-DHARD_Y_OUT_DQ H1:ASC-CHARD_Y_OUT_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ 4.027209e-07 + 1.899337e-08i -6.253913e-09 + -5.391983e-07i 2.288100e-06 + 7.990791e-06i -1.737378e-06 + 2.298928e-06i 9.970103e-07 + -1.220431e-07i -3.298331e-06 + 1.496864e-07i -1.508166e-07 + 7.110860e-08i 1.422199e-08 + 5.477017e-09i
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 1.212717e-02 + 1.579448e-02i 3.751943e-02 + -8.985242e-03i -2.913908e-01 + -7.076751e-02i -2.472445e-01 + 2.061735e-01i -1.322697e-02 + -2.848534e-03i 1.366219e-02 + 2.228457e-02i 4.838004e-05 + 3.475343e-05i 1.461367e-06 + -2.636422e-06i
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ 6.193082e-03 + 8.024728e-03i 8.308821e-03 + 4.370276e-04i -5.859089e-02 + 7.496292e-03i -1.291612e-01 + 9.458192e-02i 5.299499e-04 + -1.471683e-03i -2.998403e-02 + 5.372998e-03i -2.257520e-04 + -1.351926e-04i 2.035940e-06 + 4.561889e-05i
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ -1.106900e-03 + -1.239001e-03i -1.770337e-03 + 1.168462e-03i 4.923293e-03 + -4.170503e-03i 1.573156e-02 + -1.553507e-02i -1.447344e-03 + 9.727969e-04i 5.396046e-03 + -2.665830e-03i 7.231289e-04 + -5.450473e-04i -1.847234e-04 + 1.524634e-04i
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ 3.338836e-03 + -1.378019e-03i -5.265454e-04 + -3.143720e-03i 3.048349e-02 + 5.630679e-02i -1.485481e-02 + 1.101701e-02i 6.256012e-03 + -1.479746e-03i -1.980437e-02 + 1.992639e-03i -1.813056e-03 + 6.627589e-04i -6.409816e-05 + 4.123170e-04i
H1:ASC-AS_B_DC_YAW_OUT_DQ 1.461257e-07 + 9.761966e-08i 6.782250e-07 + -1.477519e-07i -7.024469e-06 + -4.161945e-06i 4.608787e-07 + -4.525432e-08i -1.071667e-06 + 1.429777e-07i -5.075450e-07 + -9.734776e-08i 1.095644e-07 + -4.887599e-08i 7.568048e-10 + -1.469667e-08i
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ 3.204781e-03 + 2.887774e-03i -5.959230e-03 + 7.859582e-03i -2.801530e-02 + -2.812343e-02i -5.956846e-02 + 7.233699e-02i 2.381974e-03 + 8.900326e-04i 2.864792e-02 + 1.961192e-03i -2.172238e-04 + -1.174446e-04i -1.559346e-05 + 3.033324e-05i
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 2.003745e-02 + 5.616267e-03i 1.835800e-02 + -1.275684e-02i -1.613873e-01 + 5.501185e-02i -1.121047e-01 + 1.414386e-01i -6.570962e-03 + -1.299065e-03i 2.710236e-02 + -8.189905e-05i 3.852000e-05 + -8.749586e-06i 8.448834e-06 + 1.858325e-05i
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 2.658061e-04 + 9.855628e-04i 9.948031e-04 + -3.611703e-05i -2.906763e-03 + -5.498778e-03i -1.155863e-02 + 1.032548e-02i 1.425911e-03 + -7.279870e-04i -4.509042e-04 + 2.772727e-03i -5.449907e-04 + 4.342962e-04i 1.579692e-04 + -1.402059e-04i
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ -9.145710e-04 + 1.013719e-03i 4.887684e-04 + 3.538828e-04i -2.033838e-02 + -1.530067e-02i 1.034215e-02 + -5.257066e-03i -6.722925e-03 + 1.378987e-03i 9.717521e-04 + -3.107270e-03i 1.459218e-03 + -6.064927e-04i 7.583010e-05 + -2.910549e-04i
H1:ASC-REFL_A_DC_YAW_OUT_DQ -5.860906e-05 + 5.633033e-06i 2.525165e-06 + -2.624554e-06i -8.568744e-07 + 4.788437e-06i -7.984156e-07 + -3.796204e-07i -1.069412e-08 + -5.606092e-08i 1.099525e-07 + -2.077054e-08i 3.289540e-10 + -1.891935e-09i -1.713573e-08 + -4.019022e-09i
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ -9.114679e-01 + 4.389823e-02i 3.058194e-02 + -3.550223e-02i -7.655207e-02 + 1.212435e-01i -2.045725e-02 + 1.791971e-02i -2.217381e-04 + -2.575830e-04i 2.933607e-03 + 9.105774e-04i -3.089962e-06 + 9.419621e-06i 3.028945e-04 + -1.190819e-04i
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ -1.118313e-01 + 4.802969e-03i 1.243774e-03 + -3.856832e-03i 2.259966e-03 + 3.009054e-02i -2.081784e-03 + 1.854800e-03i 8.551393e-06 + 7.184424e-05i 6.137564e-04 + -7.245219e-05i 2.335265e-06 + -1.151488e-05i 7.971158e-05 + -2.342738e-05i
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ 3.223035e-01 + -1.587003e-02i 1.731560e-02 + -5.803764e-03i -1.951371e-01 + -5.439350e-02i -7.334375e-03 + 5.597870e-02i -1.390848e-03 + 1.330532e-03i 8.352473e-03 + 1.490413e-03i 1.525240e-05 + -6.462832e-06i -2.423681e-04 + 1.216301e-04i
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ 7.133986e-02 + -8.361979e-04i 7.654021e-03 + 4.725196e-03i -1.584410e-02 + -1.052764e-01i -1.961981e-02 + -1.577263e-02i 1.332580e-03 + -2.052576e-03i 7.550922e-03 + -6.275144e-03i -3.783090e-06 + -1.497708e-06i -9.110278e-05 + 5.599862e-05i
H1:ASC-REFL_B_DC_YAW_OUT_DQ -7.049794e-05 + 5.612092e-06i 1.081151e-06 + -1.192442e-06i 3.360272e-06 + 8.986711e-07i 2.346302e-07 + -2.257806e-07i 4.108104e-08 + 2.208041e-08i 4.947713e-09 + -6.330364e-08i -1.548611e-09 + 2.554095e-10i 8.190983e-09 + -2.588118e-09i
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 7.138949e-01 + -3.517070e-02i 5.926564e-03 + 1.264845e-02i -2.368256e-01 + -1.567026e-01i -3.877796e-02 + 2.239523e-02i -9.721380e-04 + -7.849731e-04i 1.722394e-03 + 2.907902e-03i 4.637671e-06 + -5.850533e-06i 3.044071e-04 + -1.671727e-04i
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 2.721447e-01 + -1.355046e-02i 8.572409e-04 + 5.613658e-03i -7.114326e-02 + -5.755532e-02i -1.124951e-02 + 5.909535e-03i -2.945575e-04 + -2.273787e-04i 3.641409e-04 + 9.058549e-04i 2.285760e-06 + -2.110506e-07i 5.901495e-05 + -3.637193e-05i
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ -2.841604e-01 + 1.709044e-02i 2.314298e-02 + -1.326939e-02i -4.648977e-02 + -3.468623e-02i -9.497930e-03 + -5.627392e-04i 2.922929e-04 + -3.893112e-04i -5.357178e-04 + 8.921423e-04i -4.154870e-06 + 1.701789e-05i -2.879682e-04 + 1.547613e-04i
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ -2.074948e-02 + 1.756564e-03i 5.808172e-03 + -3.115659e-03i -3.450300e-02 + -6.994337e-03i -9.470159e-03 + 1.043970e-02i -4.149770e-04 + 5.438237e-05i 1.159381e-04 + 1.427145e-03i 1.278657e-06 + 5.460644e-06i -5.912523e-05 + 2.857588e-05i
H1:ASC-POP_A_YAW_OUT_DQ 2.328406e-07 + -7.252475e-09i 3.552911e-07 + -2.551209e-07i -7.090824e-07 + 4.413670e-08i -1.410812e-07 + 1.182249e-07i -2.361277e-09 + -2.638504e-09i 1.272490e-08 + 6.880929e-09i -1.507841e-10 + -2.653097e-10i 4.119425e-09 + -2.324956e-09i
H1:ASC-POP_B_YAW_OUT_DQ 1.612728e-07 + -1.976291e-08i 2.691307e-07 + -2.006345e-07i 4.065154e-07 + -3.562865e-08i 8.229263e-08 + -6.066842e-08i 1.615260e-10 + 1.524400e-09i -6.909220e-09 + -3.750446e-09i -1.708629e-11 + 2.474191e-10i -3.566622e-09 + 1.879124e-09i
GPS Times: 1109762803 1109762863 H1:ASC-INP1_Y_EXC 1109762884 1109762944 H1:ASC-PRC1_Y_EXC 1109762965 1109763026 H1:ASC-PRC2_Y_EXC 1109763047 1109763107 H1:ASC-MICH_Y_EXC 1109763128 1109763188 H1:ASC-SRC1_Y_EXC 1109763209 1109763270 H1:ASC-SRC2_Y_EXC 1109763291 1109763351 H1:ASC-DHARD_Y_EXC 1109763372 1109763432 H1:ASC-CHARD_Y_EXC
H1 AOS
gabriele.vajente@LIGO.ORG - posted 03:39, Saturday 07 March 2015 (17118)
New sensing matrix script

I updated the script to measure a generic sensing matrix, already described in 17085. The script attached to that log entry was using tdssine to generate the excitation: the drawback was that the sine was switched on without any ramp. Today this was causing the DRMI to drop lock.

This new version implements a ramp in and ramp out of the excitation, using awgstream. The usage is the same as the old version:

The script configuration is at the beginning of the python file. One has to set

When lauched without any command line argument, the script switches on the excitation one at a time (GPS times are saved to a log file for future reference). If you want to reprocess a previous measurment, you can launch the script passing the logfile as a command line argument. In this case the injections will not be performed, only the old data will be reprocessed.

When all line injections are done, the script reads the data from disk and compute the sensing matrix. Basically, it's the value of the transfer function (error signals) / (monitoring channels).

The output is saved to an HTML file that contains three tables:

The attached scripts have been used to measure both pitch and yaw sensing matrices in full lock, DC readout.

Sensing matrices will follow

Non-image files attached to this report
H1 ISC
evan.hall@LIGO.ORG - posted 02:41, Saturday 07 March 2015 (17124)
ASC in full lock

Sheila, Alexa, Gabriele, Dan, Evan

We've closed the following ASC loops in full lock, both pitch and yaw:

The above order is the order in which we turned them on

Turning on PR2 appears to just impress low-frequency seismic motion onto POP18 and ASAIR90. This is somewhat improved by turning on the PRM loop, but POP18 and ASAIR90 remain worse than if no PRC ASC is engaged at all.

Images attached to this report
H1 ISC (ISC)
gabriele.vajente@LIGO.ORG - posted 02:21, Saturday 07 March 2015 (17117)
A script to help tuning demodulation phases

To tune the demodulation phase of any R signal, you have to inject a line and typically minimize the line in the Q spectrum and maximize in the I spectrum.

The attached script help in this operation. If you set up the I and Q channel names and the frequency of the line you are injecting, it shows a StripTool like chart showing in real time the ratio of Q over I at the line frequency. You can then move the demodulation phase to bring the ratio to zero. Since what is plotted is the transfer function, it has a sign, so you can rely on the zero crossing.

This script can be easily modified to carry out different tasks, for example

Non-image files attached to this report
H1 ISC
alexan.staley@LIGO.ORG - posted 22:17, Friday 06 March 2015 - last comment - 00:44, Saturday 07 March 2015(17119)
DRMI ASC All Loops Closed

Sheila, Gabriele, Stefan, Alexa

Today we managed to close all DRMI ASC loops.

The gain and filter settings are depicted in the first attachment. We also have decoupled AS_C from SRM with an adjustment in the output matrix (see second attachement). The BW are all rough estimates. Both POP A DC (P,Y=-0.03. 0.3) and ASC_C D (P,Y = -0.5, 0.1) have offsets that correspond to good buildups. So far we have been able to close these loops several times even with re-running initial alignment. This is all in the guardian now.

Images attached to this report
Comments related to this report
alexan.staley@LIGO.ORG - 23:11, Friday 06 March 2015 (17120)

Originally we were only feeding back to the bottomg stage (except for BS which feeds back to M2). We have added offloading capabilities to the top stage for all the optics. As of now, we have successfully offloaded to the top stage for BS, PRM, and PR2.

Images attached to this comment
gabriele.vajente@LIGO.ORG - 23:49, Friday 06 March 2015 (17121)

In addition of what reported above, we also diagonalized the SR2/SRM actuation. With SRC1 and SRC2 ASC loop closed, we added an offset to the input of the SRC2 loop (which actuated only on SR2) and looked at how much the SRC1 loop moved the SRM to compensate for the cavity axis motion. We then added a SRC2 to SRM off diagonal driving term to reproduce this motion. The coefficient is -7.6 for pitch and 7.1 for yaw. We verified that with those new coefficients in the output matrix, an offset in the SRC2 loop does not move significantly the SRM.

This shoudl help us in increasing SRC1/SRC2 bandwidths, which are quite low right now.

gabriele.vajente@LIGO.ORG - 00:21, Saturday 07 March 2015 (17122)

In SRC2 filter banks we installed a compensator (HSTcomp, FM9) which has been designed to allow increasing the bandwidth up to few Hz. It's based on measurements of SR2 plant that we took in the straight beam configuration. In the same configuration we tested the loops and we could get a bandwidth of about 3 Hz in both pitch and yaw. Currently, we're not using such a high banwidth in DRMI configuration.

Images attached to this comment
sheila.dwyer@LIGO.ORG - 00:44, Saturday 07 March 2015 (17123)

Attached is a screen shot of the SRC2 (AS_C to SR2) loops that we commissioned in single bounce this morning.  We had to reduce the gain with DRMI locked, (perhaps because we had not done the diagonalization to SRM yet), but the loop shape should be the same.  

Also, we have now offloaded all of the DRMI ASC loops to the top stage.  The guardian engages all of these loops, slowly. (first BS, then INP1 and PRC2, the PRC1 (PRM), then SRC1, then SCR2) We have seen that this is repeatable for several different starting alignments.  The guardian turns off INP1PRC1PRC2SRC1, and SRC2 in the state CARM on TR.  We think that LLO leaves the SRC loops on during the offset reduction, we want to see that the loops still seem reasonable in full lock before leaving them on.  

We have manually requested the DRMI guardian to offload these offsets to the alignment sliders, this was rough and not very accurate but the lock survived.  

Before starting this morning, we adjusted the dark offsets on the AS WFS and checked that the segments are wired correctly (I moved the beam onto one quadrant at a time and checked that all quadrants have about the same response)

Images attached to this comment
H1 ISC (SUS)
daniel.hoak@LIGO.ORG - posted 19:19, Friday 06 March 2015 (17116)
hi-res spectrum from last night; prep for violin mode damping

The first plot attached is a 3mHz bandwidth spectrum of the calibrated DARM signal from last night's 4-hour lock.

Note the dips in the spectrum around the bounce and roll modes of the quad suspensions (9.78Hz and 13.9Hz, respectively).  Evan and I tracked these down to bandstops in the ETMX L1 LOCK_L filter bank that are not included in the calibration (because we don't have a hi-resolution loop gain measurement of DARM at those frequencies).

The second plot attached is a zoom of the region around the violin modes.  In preparation for some aggressive violin mode damping, I've populated the test mass L2_DAMP filter banks with bandpasses at frequencies for various collections of lines.  At the next late-night lock opportunity we'll apply the violin mode damping method that's described here (which has already been successfully applied for the 508.008Hz mode on ETMY) and see what we can do.

The initial assignment of modes --> optics follows the frequencies that were collected by Nutsinee here, but for the forests around 501-2Hz and 504-7Hz it's very rough guesswork.  Here is a list of the mode frequencies (measured from last night's data) and a rough assignment to optics:

Mode Frequency (Hz)

Optic

500.053 ITMX?
500.210  
   
501.091 ITMs
501.206  
501.253  
501.450  
501.606  
501.680  
501.747  
501.810  
   
502.620 ITMY?
502.743  
502.005  
502.118  
   
504.803 ETMX?
504.870  
505.585  
505.708  
505.805  
   
506.921 ETMX?
507.157  
507.192  
507.389  
   
507.991  
508.008 ETMY
508.145  
508.204  
508.219  
508.288  
   
508.583 ETMY?
508.659  

 

Also on the to-do list is to move the OMC alignment dither lines up above 1.5kHz and optimize the dither amplitude based on the OMC DCPD RIN noise floor in that band.

Images attached to this report
H1 CAL (CAL, DetChar, INJ, ISC)
jeffrey.kissel@LIGO.ORG - posted 17:40, Friday 06 March 2015 (17114)
Third Time's the Charm: Computing DARM Optical Gain Correction Factor, 'gamma'; Updates to CAL-CS and h1calcs.mdl
J. Kissel, K. Izumi, K. Kawabe

Corrections to gamma calculation
After battling through a little bit of complex number analysis in Simulink, I was able to create a revised calculation of the slowly, time-varying, optical gain correction to the IFO's DARM sensing function for the production of calibrated DARM displacement in the front end. What I had originally implemented (see LHO aLOG 17102) had ignored that the change in open loop gain transfer function at the calibration line frequency is a complex number and so what just, in general wrong. 

See attached screenshot 2015-03-05_CAL_CS_GAMMA_LINE1.png for the current implementation, and see the bottom half of LHO aLOG 17102, which is still valid, for what we intend to *do* with the infrastructure.

Notes:
- GAMMA is the ratio of the current DARM open loop gain transfer function at a given calibration line frequency, G, and the same transfer function at a reference time, G0, is ideally real and unity. It is this real part of GAMMA that is fed into the DARM block to correct the fluctuation in optical gain.
- Ideally, the GAMMA should be frequency independent, and we've implemented the correction as though it were frequency independent, i.e. the output of GAMMA calculated for ONE line should be selected in the GAMMA_MATRIX. However, offline, we'll want to *confirm* that the correction is frequency independent, so all four calibration lines have EPICS outputs and Fast Channel Test Points (even though at the moment, we're only planning to turn on two; see LLO aLOG 15870).
- The AMP EPICs input of each line (which again should be synchronized with that line's DEMOD's OSC CLK GAIN) should be in units of DARM_CTRL counts; Joe's matlab script referenced in LLO aLOG 15944 should take care of converting the desired amplitude to get an SNR of 30 in whatever current DARM sensitivity we have.

Updates to CAL_CS_MASTER
- I've cleaned up the DARM block in the CAL_CS_MASTER block, and added descriptive text that describes the output as we're currently intending to use it, i.e. as what's described in LLO aLOG 16421. See 2015-03-06_CAL_CS_DARM.png.
- I've added a DAQ channel list that will now store channels for the auxiliary degrees of freedom which we'll eventually calibrate. The policy is to store all ERR, CTRL, and SUM signals at the full data rate, but only store the SUM in the science frames. I had considered storing the CTRL channels at a lower rate in the commissioning frames, but since they're only used for commissioning the channels, and one almost always wants to put both CTRL and ERR on the same plot, out to the frequency desired for the ERR signal, I leave them sampled at the same rate. Again, this only impacts the commissioning frames. See 2015-03-06_CAL_CS.png
- I've added whitening filters for all of the auxiliary DOFs CTRL, ERR, and SUM channels. If we have dynamic range / double precision issues with DARM, I'm sure we'll eventually have similar problems with these DOFs.
- I've added EPICs readback of all ERR, CTRL, and SUM channels, and changed the naming convention to "MON" instead of "SLOW." This is so we can get displays of these channels on the overview screen which we'll evenutally have to create.

Added HARDWARE_INJ Library Part to Top Level h1calcs.mdl
I've updated the 
${userapps}/cal/common/models/ 
directory, such that we've received the new Hardware Injection library part. It's as described in LLO aLOG 17120, but in summary, the new feature is an ODC bit.
Images attached to this report
H1 SEI
hugh.radkins@LIGO.ORG - posted 17:13, Friday 06 March 2015 (17115)
Guardian CPS Setpoint and ISO loop start Study update--Causality Violated, GS13 gain switch implicated

Summary--Looking closer shows that the disturbance seen on the dofs are occurring before the loops are driving; what the hay?  GS13 switching very likely the thing.

Details: Hugo gave me some changes for the guardian and it does as expected but that did not correct the problem.  There was some suspicion that Guardian may have been doing things at the same time and I think these result bear this out but I ignored one thing I should have ruled out first.

The first attachment shows a manual isolation turn on from Tuesday.  This is a zoom in from alog 17042.  MICH is NOT on.  First I use the Reset CPS offset button on the medm which gets 12 samples over 3 seconds for an average (T=1).  It then loads a ramp time of 5 seconds, puts the average values determined into the SETPOINT_NOW, and, the model takes over from there loading the SETPOINT_NOW into the Current Setpoint (BIAS_RAMPMON) over the prescribed 5 seconds.  The next step is turning on the Z Isolation Loop.  It is only the vertical we are engaging and I do this with the Command script (with boost, T=2.)  Notice that nothing shows up on the RZ_LOCATIONMON until T=3 when I start the RZ loop.  This all looks reasonable.

The second attachment is a few minutes later using the guardian to isolate state2, MICH is still NOT in the picture.  T=1 shows that Guardian does not use a TRAMP and the front end puts it in with no delay.  Theoretically, this should not be any problem as again, the loops are not on yet.  However, at T=2, RZ and Z channels start to show motion, even though the loop switches are on until T=3, about 5 seconds later!  T=2 is hard to pinpoint but it is looks to be 2 or 3 seconds after T=1. 

The 3rd attachment is from this afternoon and now MICH is Dark Locked.  I've modified the Guardian to do a 4 second ramp of the Setpoint to RAMPMON.  You can see this as the RESIDUALMON goes to zero as well as the RAMPMON.  Then, 1 or 2 seconds after the RAMPMON is finished, the RZ starts moving, again, all before the Z-loops engage.  With Mich though, the lock breaks (see Watchdog upper right) and who knows after that.

What is the Guardian doing before this... aha!  The switching of the GS13 is being done by the guardian and although it would not impact the CPS_Z_LOCATIONMON, it may glitch the damping loop enough.  Yup, there it is.  The last plot I've added the GS13 SWSTAT and it corresponds to the time the RZ_LOCATION starts to drive off.

Until the Isolation loops are adjusted to work with the MICH LOCK, we should keep the GS13 gains in whitened low gain.  And, unless we make the gain switching even smoother, there needs to be more settling time after the gain switching when we do switch.

Images attached to this report
H1 SUS (DetChar)
nutsinee.kijbunchoo@LIGO.ORG - posted 16:10, Friday 06 March 2015 (17113)
DAC Glitches Follow up

Follow up from alog16977 to see if there are any DAC glitches seen during the full interferometer lock. No DAC glitches seen so far. I have also attached the spectrogram and the time series plot of DARM_OUT_DQ in case you're curious... 

Images attached to this report
Displaying reports 66581-66600 of 83254.Go to page Start 3326 3327 3328 3329 3330 3331 3332 3333 3334 End