Displaying reports 68561-68580 of 77130.Go to page Start 3425 3426 3427 3428 3429 3430 3431 3432 3433 End
Reports until 18:06, Thursday 05 December 2013
H1 CDS
david.barker@LIGO.ORG - posted 18:06, Thursday 05 December 2013 - last comment - 10:40, Friday 06 December 2013(8846)
DAQ problem with HEPI ITMY slow channels

Hugh noticed that some HEPI ITMY slow channels were not correct in the DAQ. I did some investigation and found:

Of the slow channels (datarate=16) in H1ISIITMY.ini :

channels associated with the FEC were correct

channels associated with Filter Modules were correct

other slow channels were incorrect, either showing zero or other data (like channel hopping)

Fast channels appear to be OK (within the limited sample I used)

The problem is not seen with HEPI BS or ETMX. Looking at the models they all look identical.

Reboot/Restarts:

I first restarted h1hpiitmy. Then tried restarting all models on h1seib1. Then tried a restart of the mx-streamers. Then recompiled and reinstalled the h1hpiitmy model and restarted it, followed by a DAQ restart (DAQ status was good, so this should have been unnecessary). All to no avail.

The only thing I haven't done is reboot the computer.

It appears this problem appeared when we upgraded to RCG2.8 on Tue 12 November.

Comments related to this report
keith.thorne@LIGO.ORG - 06:57, Friday 06 December 2013 (8853)
We'll have to look at those channels here at LLO (once I figure out which ones they are...).
A contributing factor may be that mx_stream driver update was not explicitly listed in the RCG 2.8 upgrade instructions.  There were changes from 2.7.2 (but none appear linked to 2.8).  This driver can be updated now, but would require mx_stream restarts (or even front-end restarts to load new kernel image).
keith.thorne@LIGO.ORG - 10:40, Friday 06 December 2013 (8861)
Celine has checked some of those channels here at LLO and is not seeing the same issue, either on MEDM screens or values on the DAQ.
LHO General
patrick.thomas@LIGO.ORG - posted 17:01, Thursday 05 December 2013 (8830)
Ops Summary
CP3 alarmed, appears to have been filled
Cleaning at end Y
Apollo torqueing bolts at end X
Corner Station chiller 2 tripped, restarted by Ski

08:52 Joe and Gerardo swapping PSL light pipe shutter
09:05 Filiberto to look at end X transmon cabling
09:39 Joe and Gerardo done swapping PSL light pipe shutter
10:02 Sheila removing beam block from PSL table
10:34 Hugh reports that the corner station HEPI pumps tripped off early this morning
10:51 Dave, Kiwamu restarting H1 LSC model, DAQ restart
10:56 DAQ restart
11:16 Hugh modifying corner station HEPI pump controller (WP 4325)
11:19 Dave restarting all models on H1 ISC EY
13:02 Thomas V. working on ITMX optical lever enclosure/bellows
13:08 Safety inspection walking through the LVEA
13:28 Gerardo to LVEA to find Thomas V.
14:16 Arnaud running transfer functions on TMSX
14:17 Apollo removed dome and north door from BSC 10 (WP 4326)
15:22 Jeff K., Sheila and Arnaud purposely tripping chamber watchdogs
15:23 Hugh done modifying corner station HEPI pump controller (WP 4325)
15:36 Gerardo and Thomas V. done with optical lever enclosure/bellows

H1 PSL
sheila.dwyer@LIGO.ORG - posted 16:16, Thursday 05 December 2013 (8844)
PSL power watchdogs tripped, safe.snaps updated

Last night the power watchdog on the PSL tripped again.  I turned the last back on this morning after the shutter was installed. 

Note:  this morning I transitioned to science mode, then stefan and I reentered to make a measurement of the modulation depth with the OSA.  When I transitioned back to commisioning mode I forgot to turn the AC on, so there was probably quite a temperature fluctuation.  Now the psl is in commisioning mode.

Since the PSL is at least working reasonably now I updated safe.snaps for the iss, fss, and pmc. 

LHO VE
kyle.ryan@LIGO.ORG - posted 16:11, Thursday 05 December 2013 (8839)
Summary of recent LVEA purge air dryer repairs
Kyle, Gerardo 

Replaced (2) each 1 1/2" check valves, (2) each  3/4" check valves, (2) each exhaust air valves + actuators, left and right tower desiccant (175lbs/tower 1/8" alumina) and the two nearest downstream filter elements.  The (2) large air valves which supply the towers during the "drying" cycle are also nearly wore out and will need replacing at the next service interval. 

Kyle, John 

As alumina dust had been generated and had been visible in the 1st downstream filter element, we made rudimentary particulate measurements from the 80 psi air (before 1 psi regulator) sampled between filter stages 3 and 4.  

For comparison, we routed nitrogen from a UHP N2 bottle+regulator via 8' of 1/2" poly tube through a 0-5 GPM (liquid) rotameter which exausted into one end of a flow box.  A particle counter was placed inside of the flow box near the opposite end.  

2 GPM indicated flow    Bottled UHP N2      sampled air 
                                     260,000 0.3u        45,000 0.3u 
                                       17,000 0.5u        12,000 0.5u 
 
3 GPM indicated flow    750,000 0.3u        50,000 0.3u 
                                       23,000 0.5u        13,000 0.5u 

30 minutes after routing the purge air supply to the LVEA Class 100 manifolds I moved the flow box apparatus to the XBM purge air connection and measured: 
 
0.8 GPM indicated flow        200 0.3u 
                                             0.0 0.5u
Non-image files attached to this report
H1 SEI
hugh.radkins@LIGO.ORG - posted 15:50, Thursday 05 December 2013 (8842)
LHO HEPI Corner Pumps Shut down--~1230utc 5 Dec

Saw the corner station pump output at zero with max drive from controller.  This condition usually indicates a level trip.  At Pump Stations on mezzanine, indications confirm.  Plus when I attempted to restart, it tripped again from fluid level so I conclude it was a level trip fault.  I lowered the trip point to compensate.  There is only about 3/4" more this can be done.  Why...colder temps? Nah, likely a pretty small effect, air bubbles working there way out?  Probably some of that going on; if it comes out of the LVEA plumbing, it can be released in the reservoir tank.  Leaks?! There are some minor leaks from two of the pumps but these are a drip or two a day kinda leaks, certainly contribute though.  Bottom, line, monitor the levels, clean up the leaks, fix the leaks, add fluid as needed.

I took the opportunity of the shut down to hardwire the FWD switch on the PS controller.  This is already the case at the End Stations.  Consequences: 1) After a shut down, there will be no need to open the panel to restart unless there is a fault to acknowledge on the controller.  This is good because access to the panel requires electrical checkout/approval from McCarthy or having McCarthy do it.  2) Restart will be abrupt if it is not brought up slowly (manually).  This could be bad as the HEPI may shake things around so please understand the process when you restart the system after shutdown.

LHO General (INS)
bubba.gateley@LIGO.ORG - posted 15:37, Thursday 05 December 2013 (8841)
Apollo crew
The dome and door bolts are installed and tightend at BSC 9.
Miscellaneous rigging, tools, o-ring protectors etc. was removed from E X and returned to corner/E Y, as needed.
The north door and dome are removed from BSC 10.
We returned the CPB jigs back to the corner station from E Y. 
H1 INS (INS)
jodi.fauver@LIGO.ORG - posted 15:19, Thursday 05 December 2013 (8840)
ETMY Install Prep: BSC10 Cleanroom set-up
In the aLIGO era, folks working at the upper level of BSCs have garbed on the E-module and then entered the Chamber Cleanroom. With the cleanrooms, E-module, etc. in the BSC10 configuration, there is no easy/acceptable way to access the E-module. If you need to do ANY cleanroom work (upper OR lower level),turn right as you come through the Change Room man-door, find the Lower Level Garbing/Staging Room and "bunny-up" there. If you need to work on the upper level or at the spool, pass through the Chamber Cleanroom to access the Spiral Staircase or the CPB Cleanroom. Avoid walking through the Test Stand Cleanroom. If you want to access the far side of the beamtube, there is no need to garb up: just turn left as you come through the man-door and follow the wall around.
H1 SEI (SEI)
hugo.paris@LIGO.ORG - posted 15:00, Thursday 05 December 2013 (8838)
HAM-ISI - Standardized Foton Files

I modified the forton files for HAM2 ans HAM3 ISI so the filter locations, and order would match the latest SEI directives. 

I attached a picture of HAM3-ISI blend filters, after updating the foton files. Foton files are attached too.

Images attached to this report
Non-image files attached to this report
H1 ISC
kiwamu.izumi@LIGO.ORG - posted 14:24, Thursday 05 December 2013 (8837)
asc model: made inital alignment library parts

Kiwamu, Stefan

We put the existing initial alignment system in the h1asc model into its own library part.the files are in /opt/rtcds/userapps/release/asc/common/models :

IAL_LOCKIN.mdl

IAL_MASTER.mdl
 

LHO VE
kyle.ryan@LIGO.ORG - posted 14:22, Thursday 05 December 2013 (8836)
1325 hrs. local -> Valved-in purge air supply to LVEA Class 100 manifolds


			
			
H1 SEI (CDS, SEI)
hugo.paris@LIGO.ORG - posted 14:00, Thursday 05 December 2013 (8835)
Sitemap & SEI Macro Substitution Files

SEI macro substitution files were created for: HEPI-ETMX and HEPI ITMX - SVN r6548

The SITEMAP.adl was updated accordingly - SVN r6549

H1 SEI (SEI)
hugo.paris@LIGO.ORG - posted 12:01, Thursday 05 December 2013 (8834)
ETMX-ISI - Turned back ON, after closeout

I turned ETMX-ISI back on today, to make sure that the recent closeout activity did not impact its functionality.

It is now running under the following configuration:
- Damping
- T100mHz_NO.44 blend on Stage 1
- 250mHz blend on Stage 2
- Level 2 Isolation loops

H1 INS
jim.warner@LIGO.ORG - posted 11:57, Thursday 05 December 2013 (8833)
BSC9 HEPI Locked

Apollo asked me to lock HEPI so they could finish torquing the dome on BSC9, so this morning ~8am I went to the end station. Did not use the IPS because DI's are still on the chamber, so I was probably more disruptive than normal, but Apollo said they would probably have to walk on the cross-beams anyway. Apollo is done now, so we will unlock when needed or convenient. This and HAM1 should be the only HEPI's in HIFO-X chain that are locked now.

H1 CDS (ISC)
david.barker@LIGO.ORG - posted 11:24, Thursday 05 December 2013 (8832)
h1iscey restarted to clear timing error

h1iopiscey has been showing a timing error since 16:15 Wed afternoon (local time). I restarted all the models on this front end and the error has been cleared.

H1 CDS (ISC)
kiwamu.izumi@LIGO.ORG - posted 11:13, Thursday 05 December 2013 (8831)
A new version of H1LSC is up and running

Chirs W, Dave B and Kiwamu I (under WP#4296)

I svn-updated the following directories to reflect the recent changes for the LSC model that Chris has been working/organizing:

With help from Chris and Dave, I complied, built and restarted the h1lsc model. Now it is up and running. DAQ also restarted.

H1 PSL
gerardo.moreno@LIGO.ORG - posted 07:01, Thursday 05 December 2013 - last comment - 16:29, Thursday 05 December 2013(8828)
PSL light pipe shutter work

(Joe, Gerardo)

PSL light pipe and shutter were removed from the chamber side (HAM01), the main PSL beam vieport was exposed to apply FC on it.  FC application (Joe used a small bottle) was finished by 4:10 PM yesterday, to protect the viewport we attached the old vieport adaptor with 3 screws to the viewport, and covered the 3" center hole with aluminum foil.
Work will continue today.

Comments related to this report
gerardo.moreno@LIGO.ORG - 16:29, Thursday 05 December 2013 (8845)INS

(Sheila, Kiwamu, Joe, Justin, Gerardo)
New MB PSL shutter is now installed.
Joe removed the FC sheet from the viewport and made sure it was clean, then the viewport adapter was installed on the viewport without problems.
Next to be installed was the shutter, the 3" nozzle has a very tight fit into the viewport adapter, it went in but we had to use longer screws to be able to press it in, then those longer bolts were removed and shorter ones were used instead.
The light pipe tube slid out of the other light pipe and into the shutter without problems, this was secured with two screws.
All items were cleaned prior to installation, including the PSL pipe, Sheila and Kiwamu pushed a wad of presoaked wipes thru it to clean it.

H1 IOO (IOO, ISC, PSL)
kiwamu.izumi@LIGO.ORG - posted 20:41, Wednesday 04 December 2013 - last comment - 07:59, Friday 06 December 2013(8821)
The mysterious RF phase jump was due to a loose connection in the EOM box. It is now fixed.

Stefan, Sheila and Kiwamu with remote assistance from Rich A. and Volker

The mysterious jump in the RF phase (see alog 7941) is now understood and fixed. It was due to a loose connection at DB15 connectors in the EOM box and not due to the SMA connector (see alog 8811 and 8813 for our early detective story). We applied two small in-situ modifications on the EOM box. As a result, now it doesn't show the mysterious RF jump any more.coolcoolcoolcoolcool

 

The box:

I briefly explain the EOM box for those who are not familiar with our custom-made EOM box. The EOM box consists of two boxes -- one contains LC resonant circuits and the other contains the EOM crystal. This two-boxes-design allows one to tune the resonant frequencies by tweaking the LC circuits without messing up the alignment of the EOM crystal because one can simply take out the electronics box and leave the crystal box for solder or tuning some parts in the circuits. To apply voltage across the EOM crystal for normal operation, the LC circuits need to be connected to the EOM crystal. This is done by a DB15 connector attached on each box -- female DB15 on the crystal box and a male DB15 on the electronics box (see pictures shown below). In this way, the two boxes are electrically connected.

A picture of the actual EOM box. The gloved hand is me pressing the SMA downward in order to reproduce the RF jump.

When I pressed the SMA connectors downward in this morning, the RF characteristic of the EOM box changed as if something jumped. This was repeatable, although it seemed that the condition to make it jump was random -- occasionally, pressing the SMA didn't make it jump and sometime pushing the SMA toward the box made it jump. Anyways, at this point, it was clear that the EOM box was the culprit and not the RF cables.

The causes:

At the beginning, we thought the culprit was the SMA connectors (see alog 8811 and 8813). However, this turned out to be wrong as we investigated it further. With a remote assistance from Volker, Stefan and I took the electronics box apart from the crystal box while keeping the crystal alignment. In the process of removal, we found that the electronics box was attached to the crystal box merely by friction of the DB15 connectors and three pieces of adhesive tape. So the orientation of the electronics box was not so solid with respect the EOM box. We then checked the return loss of the LC circuits without connecting the EOM and confirmed that wiggling the SMA connector didn't change its impedance. Instead, we discovered that the DB15 connector can easily change the amount of its stray capacitance -- the frequency of the resonant notch could shift by approximately 1 MHz by very gently touching the DB15 connector with our latex-gloved-hand. We put the electronics box back on the EOM crystal box and wiggled the orientation of them. Indeed, it changed the resonant frequency by about 1 MHz in a discontinuous way. So we determined that the loose connection in the DB15 connectors was the culprit and the mysterious RF jump was induced by some change in the orientation of the two boxes.

It seemed that the DB15 connectors were not all the way in because the two aluminum boxes contacted first.

The repair/modification fixed the issue:

We did the following two repair/modification:

The DB15 connector have two screws to support it and we put a washer for each screw. They raise the height of the DB15 connector like shims. Also, we newly installed four screws to make the connection of the two boxes more solid. There were already four screw holes on each box to accommodate them. So we just installed them. After these modifications, we checked the return loss of all three RF ports. We didn't observe the mysterious jump at all, even when the electronics box was wiggled hard. Of course, strongly pressing the electronics box downward shifts the notch position by an order of 10 kHz due to the change in the stray capacitance at the DB15 connectors, but the shift is smooth and not in a discontinuous way any more. So the RF jump issue is now solved.

A picture of the electronics box when apart from the EOM crystal box. This DB15 connector was shimmed by washers.

A picture of the EOM crystal box when the electronics box is taken away. There is a threaded screw hole on each corner and these are the ones we used for installing the new screws.

 

A top view of the EOM box with the lid off. The green circles indicate the screws that we newly installed.

 

A top view of the EOM box with the lid off. The green circles indicate the screws that we newly installed.

Images attached to this report
Comments related to this report
kiwamu.izumi@LIGO.ORG - 22:26, Wednesday 04 December 2013 (8824)

Here are the return loss of all three ports after the modification:

Also raw ASCII data of these plots in csv format are attached too.

Images attached to this comment
Non-image files attached to this comment
jodi.fauver@LIGO.ORG - 08:08, Thursday 05 December 2013 (8829)
Does this mean that someone would like to modify the 3IFO version of the EOM box?
peter.fritschel@LIGO.ORG - 07:59, Friday 06 December 2013 (8854)

A DB15 connector to pass RF signals, not to mention they're the RF signals that produce all the interferometer error signals ... speechless.

H1 AOS (IOO, SUS)
jeffrey.kissel@LIGO.ORG - posted 18:29, Wednesday 20 November 2013 - last comment - 18:55, Thursday 05 December 2013(8654)
PR3 Structure Baffles Aligned, Secured, and PR3 B&K Hammered
J. Kissel, C. Vorvick

Calum and Betsy installed the new PR3 baffles (D1300957) yesterday (see LHO aLOG 8619), but only roughed in their alignment with respect to the optic / prisms / wires. Today Cheryl and I went into HAM2, and I aligned the baffles to-the-best-of-my-ability, by-eye, and then tool tightened them to PR3 HLTS structure. My left-right metric was "just covering the edge of the bevel on the optic with the straight portion of the baffles" and my up-down metric was having the "bottom curves of the baffles following the curvature / bevel of the lower half of the optic."  It was certainly a ball-park activity, given that the goodness of alignment depends heavily on one's angle, orientation, and height of viewing. From most face-on views, however, the baffle looks to be baffling the wires and not clipping the optic.

I took many pictures, but did not find out until later that the memory card on the camera was full, so the pictures were not being stored and lost. FFFFUUUUDDDGGEEEE. 
Cheryl, Calum, Betsy, and Kate have graciously volunteered to retake pictures tomorrow before / after they pull of the first contact on all the optics.

We also took B&K hammer transfer functions after securing the baffles (with PR3 freely suspended, and the ISI Locked, and probably with me leaning on the table). I placed the accelerometer in the exact same location and configuration as in LHO aLOG 6014, (4th picture attached) with ACC +X = PR3 -L, ACC +Y = PR3 -T, and ACC +Z = PR3 +V, in the upper left corner of the cage on the HR face, "front" of the cage. The X impacts with the hammer were just below the accelerometer, on the HR face. The Y impacts were on that same strut / corner, at the same height as the accelerometer, on the -T face of the cage, in the +T direction. Comparing these results with the previous results taken before the baffles were installed -- by-eye they look roughly equivalent. The resident LHO expert of post-processing the data is off to LLO for a few days, so we'll post a comparison next week (or I can ask Calum / Stuart tomorrow, we'll see.)

For now, the saved templates live only on the laptop, and live in
C:\Users\ligo\Desktop\SUS Hammer Test\PR3
and are called
SimpleHammerDisplay3-PR3Baffle-ISIlocked-Ximpact.pls
SimpleHammerDisplay3-PR3Baffle-ISIlocked-Yimpact.pls
Comments related to this report
arnaud.pele@LIGO.ORG - 18:55, Thursday 05 December 2013 (8847)

Attached are the plots comparing the dynamical behavior of PR3 structure with and without the baffles.
The first page shows the X-X response, and second page Y-Y
Green curve is the old measurement without the baffles, and blue curve is the new measurement with the baffles.

As we were expecting, and since the baffle is really light compared to the structure, no main difference is observed.

Non-image files attached to this comment
H1 ISC
alexan.staley@LIGO.ORG - posted 09:19, Friday 08 November 2013 - last comment - 15:39, Thursday 05 December 2013(8437)
ISCTEX mode matching

(Alexa, Sheila)

I am still puzzled by some of the mode matching measurements I took of ISCTEY. I had attemped to compare the accuracy of the Mode Master, Nanoscan, and Knife edge. They seem to approximately agree, but it's hard to say which is most accurate.

Regardless...I examined the beam profile exiting the table enclosure with all the lenses in place using the Mode Master. Refering to D1100607-v13, I found the optimal placement of the telescope to be: ALS-L6 13.5 inches from ALS-M9, ALS-L7 6 inches from ALS-M10. With an "a la mode" script, I determined the mode matching overlap with the TransMon secondary mirror to be 87% for the horizontal profile and 98.6% for the vertical profile. This overlap was computed with a 2.2mm waist at 3.5m from ALS-M11. The waist size and location was determined via T1200200-v1, D0902163, D1201457 as done in the ISCTEX MM alog with a correction of 4ft for the panel location change between EX and EY.

I have attached the scripts and MM snap shot. Note: the first matlab script is just the profile taken by the MM after the telescope, along with the overlap computation. The second script contains the full profile of ISCTEY, which is where some of my confusion persists.

Images attached to this report
Non-image files attached to this report
Comments related to this report
alexan.staley@LIGO.ORG - 15:39, Thursday 05 December 2013 (8843)

I examined the beam width with the Mode Master, NanoScan, and Knife Edge on the ISCTEY with ALS-L5 in place (22inch from M6); however, prior to the telescope. Comparing the three measurements at approximately the same location away from the laser (z=0), I found:

Knife Edge:

z = 2.794m        beam radii = .37mm

Nanoscan:

z = 2.756 m       beam radii (horz) = .40mm     beam radii (vert) = .43mm    ** careful, data point was not taken at the exact same location as MM or knife edge

Mode Master:

z = 2.794m        beam radii (horz) = .40mm      beam radii (vert) = .42mm

These measurements are within ~ 10% of each other.

Displaying reports 68561-68580 of 77130.Go to page Start 3425 3426 3427 3428 3429 3430 3431 3432 3433 End