Reports until 20:29, Thursday 25 July 2013
H1 ISC
jeffrey.kissel@LIGO.ORG - posted 20:29, Thursday 25 July 2013 - last comment - 12:00, Thursday 08 August 2013(7235)
Red Arm Locked with High-Performing SEI/SUS
J. Kissel, H. Paris, A. Pele, B. Shapiro

After spending all afternoon getting all the chambers up into their best (local) performance, I've used Stefan's instructions to lock the Y ARM on Red. So easy -- even I could do it! Thanks to all of those who've written scripts to automate the ALS and IMC :-). Interestingly, and I forgot to ask about it, but there's no need to run any down script when the lock is lost. One just runs the two scripts again (assuming your Beam Splitter alignment remains good).

OK, I wrote the aLOG too soon. There have been several lock stretches, and the ISI-BS has tripped. I detailed time line is written below, for as long as I stayed here.

Here's the configuration of the SEI/SUS during these stretched:

Cavity Lock: 
Chamber    HEPI                                   ISI                               SUS
HAM1       Locked                                 n/a                               n/a
HAM2       Floating, Alignment Offsets Only       Level 2 Isolated                  MC1, MC3, PRM damped Level 1.5; PR3 damped Level 1.0
HAM3       Floating, Alignment Offsets Only       Level 2 Isolated (eLIGO Blends)   MC2, PR2 damped Level 1.5 
BS         Level 2 Isolated (Position Locked)     Level 3 Isolated*                 BS damped Level 2.0
ITMY       Locked                                 Level 3 Isolated                  ITMY damped Level 2.1
ETMY       Level 2 Isolated (Position Locked)     Level 3 Isolated                  ETMY damped Level 2.1, TMSY damped Level 2.0

* I noticed ISI-BS had tripped around 2:53 UTC, but it may have been down for some time. I didn't bother bringing it back up, 'cause I didn't want to blow the cavity lock. Or another three hours.

All Optical Levers are well centered.

All BSC-ISIs have been brought up to the configuration outlined in LHO aLOG 7226, but just for posterity, this means:
Level 3 Isolation Filters
Blends at ST1 "T250mHz" and ST2 "250mHz"
GND to ST1 STS2 Sensor Correction is ON (The corner station ISIs are both using the beer-garden STS2)
ST1 to ST2 T240 Sensor Correction is ON
ST0 to ST1 HEPI L4C Feed-Forward is ON (with "FF01_2" filters)
The Input Gains for the L4Cs and GS13s are OFF (I *think* this means they're in low -gain mode). They're ON for the T240s.

----------
Time Line (all times UTC, Jul 25 2013)
2:27 Locked on Red
2:46 Lost Red Lock
2:47 Regained Red Lock
    2:50 Glitch in CARM_IN1!
    2:53 Noticed ISI-BS had tripped. All other ISIs are still fully operational
    2:57 Glitch in CARM_IN1!
3:00 Lost Red Lock
3:06 Regained Red Lock
    3:11:23 Glitch in CARM_IN1! 
    3:24:47 Glitch in CARM_IN1!
3:27 We begin to ignore the IFO and go home, be cause there's enough data in the can to get a 0.01 [Hz] measurement in the past (assuming those glitches don't spoil the spectra)... but may the lock last through the night!
Comments related to this report
joshua.smith@LIGO.ORG - 11:30, Friday 26 July 2013 (7245)
Josh Smith, Chris Pankow

Hi HIFO-Y folks,

Stefan asked us to look into coherence around the time of the HIFO-Y tests of the past two days. Here we're comparing the data from the 25th in alog 7220 with the one from the 26th in this alog. The most noticeable difference between the two times is that the CARM noise is significantly lower, and nearly the whole effect comes from engaging the PSL ISS. Attached plots are: 

1) CARM noise from 25th compared to CARM noise from 26th.
2) PSL ISS PDA and PDB for 25th -  ISS OFF (sorry for not having this in RIN, will try to update with that info.)
3) PSL ISS PDA and PDB for the 26th - ISS ON
4) Coherence between ISS and CARM for 25th (very high)
5) Coherence between ISS and CARM for 26th (almost none)

Note: o find the clean times we looked at ALS-Y_REFL_B_LF_OUT_DQ and LSC-CARM_IN1_DQ to make sure it was locked and had not glitches. 

Stefan mentioned that this could be from Intensity noise coupling to length/frequency noise in the IMC via radiation pressure. This should not be hard to calculate with the RIN of the PSL, the length and geometry of the MC, and the mirror masses. Is it already in the noise budget? 

We will continue for looking for other systems that have coherence during the quieter time on the 26th. 
Non-image files attached to this comment
joshua.smith@LIGO.ORG - 17:46, Friday 26 July 2013 (7250)
For the lower-noise HIFO-Y time from the 26th in the comment above, the PSL table/periscope accelerometer channels are somewhat coherent with the ratty noise from 100-400Hz (see attached PDF). This is not quite a strong as the coherence with the green laser HIFO-Y signal reported by Robert and co on 7150. In addition to that, the HAM3 GS13s show coherence at 0.4, 1, 3, and 4.2Hz (see second attachment). I also checked MICs, MAGs, TILTs, and L4Cs and didn't find anything to write home about. 
Non-image files attached to this comment
stefan.ballmer@LIGO.ORG - 17:24, Tuesday 06 August 2013 (7365)
vincent.lhuillier@LIGO.ORG - 12:00, Thursday 08 August 2013 (7378)
Lock happens on Jul 26 2013 (UTC)
2:27 Locked on Red
2:46 Lost Red Lock