Displaying reports 61341-61360 of 86555.Go to page Start 3064 3065 3066 3067 3068 3069 3070 3071 3072 End
Reports until 01:51, Sunday 06 March 2016
H1 ISC
evan.hall@LIGO.ORG - posted 01:51, Sunday 06 March 2016 (25898)
DARM offset test (again)

Rob, Evan

We looked again at DARM noise versus DARM offset. This time, we took Matt's suggestion and added a stopband filter (>20 dB suppression from 83 to 93 Hz) in PRCL, MICH, SRCL, dHard p/y, BS p/y, and SR2 p/y.

There is no change to the noise or the DCPD coherence within the filter stopband.

Times as follows (all 2016-03-06 Z):

Images attached to this report
H1 ISC
sheila.dwyer@LIGO.ORG - posted 23:04, Saturday 05 March 2016 - last comment - 02:07, Sunday 06 March 2016(25896)
a little more ASC work

Rob, Evan, Sheila

We have been doing a little bit more work on ASC today. The main messages:

First we measured the DC centering loops for different configurations, because we have had different measurements come to different conclusions in the last few days about the stability of these loops.  The gain of these loops is the same with no ASC on, with full DRMI ASC on, and in full lock without a DARM offset or any ASC on.  However, changing the DARM offset changes the response of these loops (especially DC3, which is centering AS A), somehow adding more phase at the ugf for DC3 P+Y.  The first four attachments are comparisions of the loop gains with and without a DARM offset on.  The coherence is not good for the DC3 P measurement with a DARM offset on, the rest of the coherences are fine.

We then looked at the sensitivity of the TMS QPDs to transmon motion.  We had originaly choosen a combination of QPDs that was insensitive to pit and yaw, but Rana has told us that at LLO it is more important to be insensitive to roll.  We looked 60 day trends of the osems, and moved TMS some amount that was comparable to the drift according to the osems, and looked at the QPD response. If we believe the osems, the pit and yaw drifts are the most important for the QPDs by far, although for TMS Y there was also a small reponse to Roll and V (pushing on V also moved pit and yaw according to the osems, so this may explain the coupling of V to the QPDs). 

Then we drove the transmons at 1.3 Hz and found the combination of QPDs that was least sensitive to TMS pit and yaw.  We had done this last time in April, I think.  We improved the sensitivity to all 4 angles by at least a factor of 10. The new input matrix is shown in the 5th attachment.   We then closed the soft loops, without adjusting the offsets to account for the new input matrix (seems OK so far).  Since the new input matrix is normalized so that the elements from each arm are 1, the digital gain for the soft loops is increased by 50%. 

The first time we powered up I had tried increasing the offloading gain on all test masses by 20 dB, this may or may not have been the cause of a very slow instability where PRC2 Y, DSOFT and CSOFT rang up and eventually broke the lock. 

Rob had a look at why we had been unable to run Gabriele's sensing matrix script.  We would like to use this script instead of the lockins because we can easily add some sensors that aren't in the lockin matrix like the centering signals.  One thing we noticed is that while we can easily add the DC centering signal, the RF centering signals are not in the frames.  We probably want to add these to the frames anyway.

Images attached to this report
Comments related to this report
robert.ward@LIGO.ORG - 02:05, Sunday 06 March 2016 (25897)
There were a couple of issues in the script, including an incorrect sampling frequency as well a hanging call to the python nds2 library and apparently some changes to markup.py.  I have a version I'm working with in my home/scripts directory that used cdsutils instead.  Here is the ASC PIT sensing matrix, measured in DC READOUT at 2W:



Sensing matrix measurement


Sensing matrix (abs)

Excitation: H1:ASC-INP1_P_SM_EXC H1:ASC-PRC1_P_SM_EXC H1:ASC-PRC2_P_SM_EXC H1:ASC-MICH_P_SM_EXC H1:ASC-SRC1_P_SM_EXC H1:ASC-SRC2_P_SM_EXC H1:ASC-DHARD_P_SM_EXC H1:ASC-CHARD_P_SM_EXC H1:ASC-DSOFT_P_SM_EXC H1:ASC-CSOFT_P_SM_EXC
Monitor channel: H1:ASC-INP1_P_SM_DQ H1:ASC-PRC1_P_SM_DQ H1:ASC-PRC2_P_SM_DQ H1:ASC-MICH_P_SM_DQ H1:ASC-SRC1_P_SM_DQ H1:ASC-SRC2_P_SM_DQ H1:ASC-DHARD_P_SM_DQ H1:ASC-CHARD_P_SM_DQ H1:ASC-DSOFT_P_SM_DQ H1:ASC-CSOFT_P_SM_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ 2.4e-06 2.0e-08 1.7e-06 9.7e-07 1.2e-06 7.4e-05 4.3e-07 3.0e-08 3.9e-08 2.9e-08
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ 1.7e-02 5.8e-04 8.7e-02 3.6e-03 1.1e-02 1.6e+00 2.6e-04 5.4e-06 8.9e-05 4.0e-05
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ 3.0e-02 4.7e-04 4.6e-02 8.2e-03 2.0e-02 2.6e+00 1.7e-04 1.4e-05 2.8e-04 4.3e-05
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 3.5e-03 6.5e-05 1.3e-02 1.7e-03 2.2e-03 3.5e-01 1.0e-05 7.6e-06 6.1e-05 6.6e-07
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ 1.2e-03 1.9e-04 2.0e-02 5.7e-03 1.7e-02 1.1e+00 3.0e-03 2.3e-04 2.8e-04 1.7e-04
H1:ASC-AS_B_DC_PIT_OUT_DQ 5.8e-07 8.2e-08 1.0e-05 5.4e-07 2.4e-06 9.0e-05 3.0e-07 1.6e-08 2.9e-08 2.3e-08
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ 1.3e-02 1.7e-04 3.7e-02 3.1e-03 2.0e-02 2.2e+00 3.1e-04 2.3e-05 6.8e-05 6.2e-05
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ 1.9e-02 1.8e-04 3.2e-02 9.1e-03 9.8e-03 1.7e+00 1.3e-04 2.1e-05 2.8e-04 1.5e-05
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ 3.1e-03 1.1e-04 1.8e-02 1.2e-03 3.9e-04 2.1e-01 2.7e-05 6.8e-06 4.3e-05 1.7e-06
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 1.3e-02 5.2e-04 6.4e-02 4.5e-03 1.9e-02 9.8e-01 2.7e-03 2.3e-04 2.4e-04 1.8e-04
H1:ASC-AS_C_PIT_OUT_DQ 1.5e-06 1.1e-07 1.5e-05 1.9e-07 2.9e-06 1.3e-04 9.4e-08 3.8e-09 6.9e-09 8.7e-09
H1:ASC-REFL_A_DC_PIT_OUT_DQ 3.6e-06 3.8e-08 1.2e-05 1.1e-06 7.8e-08 1.1e-05 8.2e-08 8.0e-08 1.1e-08 3.2e-08
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 1.9e+00 1.9e-03 3.9e-01 2.0e-03 3.0e-03 6.4e-01 2.1e-05 3.7e-04 1.9e-05 8.8e-05
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 3.8e-01 2.6e-04 4.5e-02 4.0e-04 2.0e-04 7.5e-02 1.5e-05 1.0e-04 1.3e-05 1.3e-05
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ 2.0e+00 2.1e-03 1.4e-01 2.5e-03 1.3e-04 1.8e-01 3.4e-05 4.1e-04 4.1e-05 7.3e-05
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ 4.9e-01 6.3e-04 6.7e-02 9.6e-04 1.1e-03 1.3e-01 1.4e-06 1.1e-04 1.3e-05 9.3e-06
H1:ASC-REFL_B_DC_PIT_OUT_DQ 1.6e-04 4.5e-08 7.2e-06 1.0e-06 1.9e-07 1.2e-05 3.4e-08 3.8e-08 1.3e-08 2.7e-08
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ 1.7e+00 6.1e-03 3.8e-01 2.3e-03 3.5e-03 6.7e-01 5.0e-05 3.4e-04 1.5e-05 7.8e-05
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ 4.3e-01 1.2e-03 7.0e-02 4.4e-04 6.7e-04 1.2e-01 1.0e-05 4.7e-05 3.2e-06 1.5e-05
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ 1.9e+00 2.5e-03 2.0e-01 7.2e-04 4.4e-03 2.7e-01 4.8e-05 4.1e-04 3.6e-05 3.5e-05
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ 6.5e-01 6.1e-04 1.1e-01 1.5e-03 3.2e-03 3.2e-01 2.7e-05 1.4e-04 2.3e-05 1.8e-05
H1:ASC-POP_A_PIT_OUT_DQ 1.3e-06 3.6e-08 1.0e-06 9.5e-08 2.1e-08 1.9e-06 3.6e-10 6.6e-09 5.4e-10 4.3e-10
H1:ASC-POP_B_PIT_OUT_DQ 7.0e-07 9.7e-08 7.0e-07 5.5e-08 2.0e-08 1.9e-06 2.1e-09 2.8e-09 1.0e-09 6.0e-10
H1:ASC-X_TR_A_PIT_OUT_DQ 1.0e-06 1.1e-08 5.6e-07 1.9e-08 1.9e-07 1.3e-05 1.2e-08 1.1e-08 6.8e-10 3.9e-10
H1:ASC-X_TR_B_PIT_OUT_DQ 9.3e-07 1.0e-08 5.1e-07 1.1e-08 1.8e-07 1.2e-05 1.1e-08 1.1e-08 1.1e-09 9.4e-11
H1:ASC-Y_TR_A_PIT_OUT_DQ 6.1e-07 1.3e-08 8.7e-07 1.4e-08 1.9e-07 1.6e-05 1.2e-08 1.2e-08 1.3e-09 1.2e-09
H1:ASC-Y_TR_B_PIT_OUT_DQ 4.7e-07 1.2e-09 1.5e-07 2.8e-09 5.6e-08 2.1e-06 1.8e-09 1.7e-09 1.9e-09 2.0e-09

Coherence matrix

Excitation: H1:ASC-INP1_P_SM_EXC H1:ASC-PRC1_P_SM_EXC H1:ASC-PRC2_P_SM_EXC H1:ASC-MICH_P_SM_EXC H1:ASC-SRC1_P_SM_EXC H1:ASC-SRC2_P_SM_EXC H1:ASC-DHARD_P_SM_EXC H1:ASC-CHARD_P_SM_EXC H1:ASC-DSOFT_P_SM_EXC H1:ASC-CSOFT_P_SM_EXC
Monitor channel: H1:ASC-INP1_P_SM_DQ H1:ASC-PRC1_P_SM_DQ H1:ASC-PRC2_P_SM_DQ H1:ASC-MICH_P_SM_DQ H1:ASC-SRC1_P_SM_DQ H1:ASC-SRC2_P_SM_DQ H1:ASC-DHARD_P_SM_DQ H1:ASC-CHARD_P_SM_DQ H1:ASC-DSOFT_P_SM_DQ H1:ASC-CSOFT_P_SM_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ 0.04 0.43 0.65 0.65 0.85 0.64 1.00 0.78 0.71 0.88
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ 0.01 0.60 0.94 0.92 0.59 0.91 0.98 0.05 0.84 0.83
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ 0.01 0.29 0.64 0.98 0.66 0.89 0.94 0.15 0.97 0.78
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 0.01 0.30 0.89 0.89 0.58 0.88 0.27 0.23 0.94 0.01
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ 0.00 0.20 0.61 0.88 0.86 0.85 1.00 0.94 0.95 0.97
H1:ASC-AS_B_DC_PIT_OUT_DQ 0.00 0.90 0.98 0.40 0.94 0.70 1.00 0.54 0.65 0.78
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ 0.00 0.07 0.63 0.75 0.73 0.90 0.98 0.32 0.69 0.87
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ 0.01 0.12 0.67 0.98 0.52 0.84 0.92 0.30 0.97 0.31
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ 0.01 0.73 0.97 0.98 0.08 0.74 0.85 0.55 0.97 0.23
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 0.01 0.71 0.95 0.91 0.91 0.73 1.00 0.97 0.97 0.98
H1:ASC-AS_C_PIT_OUT_DQ 0.01 0.88 0.99 0.79 0.94 0.97 1.00 0.72 0.87 0.97
H1:ASC-REFL_A_DC_PIT_OUT_DQ 0.16 0.76 0.99 0.01 0.03 0.02 0.08 0.08 0.00 0.03
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 1.00 0.98 1.00 0.14 0.20 0.36 0.02 0.93 0.02 0.65
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 1.00 0.96 0.99 0.02 0.02 0.14 0.04 0.72 0.02 0.09
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ 1.00 0.99 0.97 0.03 0.00 0.06 0.01 0.69 0.01 0.13
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ 1.00 0.98 0.99 0.20 0.37 0.29 0.00 0.92 0.08 0.15
H1:ASC-REFL_B_DC_PIT_OUT_DQ 1.00 0.80 0.92 0.05 0.14 0.02 0.06 0.10 0.01 0.16
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ 1.00 1.00 1.00 0.52 0.28 0.43 0.37 0.98 0.05 0.83
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ 1.00 1.00 1.00 0.08 0.29 0.46 0.08 0.77 0.01 0.36
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ 1.00 0.99 0.99 0.02 0.53 0.12 0.11 0.93 0.04 0.18
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ 0.99 0.95 0.99 0.54 0.61 0.52 0.36 0.97 0.26 0.49
H1:ASC-POP_A_PIT_OUT_DQ 0.46 0.99 0.97 0.19 0.10 0.03 0.01 0.65 0.01 0.02
H1:ASC-POP_B_PIT_OUT_DQ 0.34 1.00 0.97 0.05 0.19 0.06 0.08 0.19 0.02 0.02
H1:ASC-X_TR_A_PIT_OUT_DQ 0.13 0.77 0.78 0.22 0.70 0.33 0.99 1.00 0.30 0.31
H1:ASC-X_TR_B_PIT_OUT_DQ 0.13 0.76 0.78 0.40 0.70 0.32 1.00 1.00 0.89 0.23
H1:ASC-Y_TR_A_PIT_OUT_DQ 0.06 0.80 0.89 0.41 0.67 0.47 1.00 1.00 0.91 0.98
H1:ASC-Y_TR_B_PIT_OUT_DQ 0.41 0.44 0.82 0.15 0.79 0.19 0.99 0.99 0.98 1.00

Sensing matrix (complex)

Excitation: H1:ASC-INP1_P_SM_EXC H1:ASC-PRC1_P_SM_EXC H1:ASC-PRC2_P_SM_EXC H1:ASC-MICH_P_SM_EXC H1:ASC-SRC1_P_SM_EXC H1:ASC-SRC2_P_SM_EXC H1:ASC-DHARD_P_SM_EXC H1:ASC-CHARD_P_SM_EXC H1:ASC-DSOFT_P_SM_EXC H1:ASC-CSOFT_P_SM_EXC
Monitor channel: H1:ASC-INP1_P_SM_DQ H1:ASC-PRC1_P_SM_DQ H1:ASC-PRC2_P_SM_DQ H1:ASC-MICH_P_SM_DQ H1:ASC-SRC1_P_SM_DQ H1:ASC-SRC2_P_SM_DQ H1:ASC-DHARD_P_SM_DQ H1:ASC-CHARD_P_SM_DQ H1:ASC-DSOFT_P_SM_DQ H1:ASC-CSOFT_P_SM_DQ
H1:ASC-AS_A_DC_PIT_OUT_DQ -1.3e-07 + -2.4e-06i 5.1e-09 + 2.0e-08i -1.4e-06 + -8.9e-07i -8.0e-07 + 5.4e-07i -3.9e-07 + 1.1e-06i 1.2e-05 + -7.3e-05i -3.8e-07 + 2.1e-07i 2.7e-08 + -1.4e-08i -3.1e-08 + 2.4e-08i 2.7e-08 + -1.1e-08i
H1:ASC-AS_A_RF36_I_PIT_OUT_DQ -1.3e-03 + 1.7e-02i 5.6e-04 + 1.7e-04i -8.4e-02 + 2.4e-02i 2.6e-03 + -2.4e-03i -4.8e-04 + -1.1e-02i -1.1e+00 + 1.2e+00i 2.1e-04 + -1.6e-04i 2.0e-06 + 5.1e-06i -7.3e-05 + 5.0e-05i -3.6e-05 + 1.7e-05i
H1:ASC-AS_A_RF36_Q_PIT_OUT_DQ -2.4e-02 + 1.8e-02i 4.3e-04 + 1.8e-04i -4.5e-02 + -3.7e-03i -6.8e-03 + 4.5e-03i 1.8e-02 + -6.9e-03i -2.5e+00 + -6.7e-01i 3.1e-05 + -1.6e-04i 9.9e-06 + 9.8e-06i 2.3e-04 + -1.7e-04i -3.2e-05 + 2.9e-05i
H1:ASC-AS_A_RF45_I_PIT_OUT_DQ 2.6e-03 + 2.3e-03i 6.3e-05 + 1.7e-05i -1.2e-02 + 5.7e-03i 1.4e-03 + -9.0e-04i -2.2e-03 + -5.4e-04i 2.0e-01 + 2.9e-01i 7.7e-07 + 1.0e-05i 5.3e-06 + -5.4e-06i -5.0e-05 + 3.5e-05i -4.7e-07 + -4.5e-07i
H1:ASC-AS_A_RF45_Q_PIT_OUT_DQ -6.0e-04 + 1.0e-03i -5.2e-05 + -1.8e-04i 1.9e-02 + 3.9e-03i -4.7e-03 + 3.3e-03i -1.6e-02 + -2.2e-03i -1.1e+00 + 3.1e-01i -2.7e-03 + 1.4e-03i 2.1e-04 + -8.6e-05i -2.4e-04 + 1.4e-04i 1.6e-04 + -6.8e-05i
H1:ASC-AS_B_DC_PIT_OUT_DQ 4.6e-07 + 3.5e-07i -8.0e-08 + -2.1e-08i 8.8e-06 + -5.6e-06i 4.7e-07 + -2.7e-07i 1.4e-06 + -1.9e-06i -2.0e-05 + 8.8e-05i 2.6e-07 + -1.5e-07i -1.5e-08 + 5.5e-09i 2.5e-08 + -1.5e-08i -2.0e-08 + 1.1e-08i
H1:ASC-AS_B_RF36_I_PIT_OUT_DQ -2.5e-03 + -1.3e-02i -1.6e-04 + -6.3e-05i 3.7e-02 + 7.6e-03i -2.2e-03 + 2.2e-03i -3.4e-03 + 2.0e-02i 1.5e+00 + -1.6e+00i -2.3e-04 + 2.1e-04i -2.1e-05 + 8.9e-06i 5.2e-05 + -4.4e-05i 5.2e-05 + -3.5e-05i
H1:ASC-AS_B_RF36_Q_PIT_OUT_DQ -1.5e-02 + -1.1e-02i -8.1e-05 + 1.7e-04i 9.2e-03 + -3.1e-02i -6.7e-03 + 6.2e-03i 9.7e-03 + 1.7e-03i -1.1e+00 + -1.3e+00i -1.3e-04 + -1.0e-05i 1.3e-05 + -1.6e-05i 2.2e-04 + -1.6e-04i -8.3e-06 + 1.3e-05i
H1:ASC-AS_B_RF45_I_PIT_OUT_DQ -1.1e-03 + -2.9e-03i -1.0e-04 + -4.8e-05i 1.7e-02 + -5.9e-03i -1.0e-03 + 6.0e-04i 3.8e-04 + -9.6e-05i -1.1e-01 + -1.8e-01i 2.2e-05 + -1.5e-05i -6.4e-06 + 2.2e-06i 3.6e-05 + -2.3e-05i -1.1e-07 + 1.7e-06i
H1:ASC-AS_B_RF45_Q_PIT_OUT_DQ 3.8e-03 + -1.3e-02i -5.2e-04 + -2.1e-07i 5.2e-02 + -3.8e-02i 3.8e-03 + -2.4e-03i 1.9e-02 + -1.9e-03i 9.7e-01 + -1.3e-01i 2.5e-03 + -1.0e-03i -2.2e-04 + 3.6e-05i 2.1e-04 + -1.2e-04i -1.7e-04 + 5.7e-05i
H1:ASC-AS_C_PIT_OUT_DQ 5.7e-09 + 1.5e-06i 7.5e-08 + 7.7e-08i -1.5e-05 + 1.4e-07i 1.4e-07 + -1.3e-07i -2.9e-06 + 4.2e-08i 1.3e-04 + -4.8e-05i 8.2e-08 + -4.4e-08i -3.7e-09 + 8.6e-10i 6.1e-09 + -3.2e-09i -7.7e-09 + 3.9e-09i
H1:ASC-REFL_A_DC_PIT_OUT_DQ 4.3e-07 + -3.5e-06i -2.6e-08 + -2.8e-08i -1.2e-05 + 1.8e-06i -8.2e-07 + -7.1e-07i -4.7e-08 + 6.2e-08i 9.7e-06 + -5.4e-06i 3.6e-08 + -7.3e-08i 2.2e-08 + -7.7e-08i 1.0e-08 + -5.5e-09i -3.1e-08 + -8.5e-09i
H1:ASC-REFL_A_RF9_I_PIT_OUT_DQ 4.7e-01 + -1.8e+00i -1.4e-03 + -1.3e-03i 3.9e-01 + -2.2e-02i 1.0e-03 + -1.7e-03i -2.9e-03 + -5.1e-04i 1.0e-01 + 6.3e-01i 2.1e-05 + -7.9e-07i 3.4e-04 + -1.4e-04i -1.6e-05 + 1.0e-05i 8.7e-05 + -1.6e-05i
H1:ASC-REFL_A_RF9_Q_PIT_OUT_DQ 9.2e-02 + -3.7e-01i -1.9e-04 + -1.9e-04i 4.5e-02 + -2.0e-03i 1.6e-04 + -3.7e-04i 1.1e-04 + 1.6e-04i 1.4e-02 + 7.4e-02i 6.2e-06 + -1.3e-05i 9.0e-05 + -4.8e-05i 3.3e-06 + 1.2e-05i 5.8e-06 + -1.1e-05i
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ 4.7e-01 + -1.9e+00i 1.8e-03 + 1.1e-03i -1.4e-01 + 1.6e-02i -2.2e-03 + 1.2e-03i 1.2e-04 + 6.2e-05i -9.4e-02 + -1.6e-01i -2.7e-05 + 2.1e-05i 3.9e-04 + -1.2e-04i -1.0e-05 + -4.0e-05i 3.2e-05 + 6.6e-05i
H1:ASC-REFL_A_RF45_Q_PIT_OUT_DQ 1.1e-01 + -4.8e-01i 4.9e-04 + 4.0e-04i -6.7e-02 + 5.8e-03i -6.4e-04 + -7.2e-04i 8.1e-04 + 6.9e-04i -4.8e-02 + -1.2e-01i -1.5e-08 + 1.4e-06i 1.0e-04 + -3.4e-05i 9.4e-06 + 8.6e-06i -8.5e-06 + 3.8e-06i
H1:ASC-REFL_B_DC_PIT_OUT_DQ -3.5e-05 + 1.6e-04i -4.4e-08 + -1.3e-08i 7.0e-06 + -1.3e-06i 7.1e-07 + -7.7e-07i -1.1e-07 + -1.5e-07i -2.2e-06 + 1.2e-05i -3.0e-08 + -1.5e-08i -3.8e-08 + -1.0e-09i -5.7e-09 + 1.2e-08i 1.7e-09 + -2.7e-08i
H1:ASC-REFL_B_RF9_I_PIT_OUT_DQ -4.0e-01 + 1.6e+00i -4.7e-03 + -3.9e-03i 3.8e-01 + -2.1e-02i 2.1e-03 + -9.4e-04i -3.1e-03 + -1.7e-03i 3.8e-02 + 6.7e-01i -4.4e-05 + 2.4e-05i 3.0e-04 + -1.6e-04i -1.3e-05 + 5.6e-06i 7.0e-05 + -3.5e-05i
H1:ASC-REFL_B_RF9_Q_PIT_OUT_DQ -1.1e-01 + 4.2e-01i -9.4e-04 + -7.7e-04i 7.0e-02 + -4.2e-03i 4.2e-04 + -1.3e-04i -5.8e-04 + -3.3e-04i 4.7e-03 + 1.2e-01i -1.0e-05 + 1.6e-06i 3.7e-05 + -2.8e-05i 3.2e-06 + -2.4e-07i 1.0e-05 + -1.2e-05i
H1:ASC-REFL_B_RF45_I_PIT_OUT_DQ -4.9e-01 + 1.8e+00i -1.9e-03 + -1.6e-03i -2.0e-01 + 1.8e-02i -7.1e-04 + -1.3e-04i 4.3e-03 + 1.2e-03i -1.1e-01 + -2.5e-01i -4.8e-05 + -9.7e-07i 3.6e-04 + -2.0e-04i 2.5e-05 + 2.6e-05i -3.3e-05 + -1.2e-05i
H1:ASC-REFL_B_RF45_Q_PIT_OUT_DQ -1.7e-01 + 6.3e-01i -5.3e-04 + -3.1e-04i -1.1e-01 + 7.2e-03i -6.9e-04 + 1.3e-03i 2.7e-03 + 1.7e-03i -7.3e-02 + -3.1e-01i -2.1e-05 + 1.7e-05i 1.2e-04 + -6.5e-05i 1.3e-05 + -1.9e-05i -1.7e-05 + 5.4e-06i
H1:ASC-POP_A_PIT_OUT_DQ -4.0e-07 + 1.2e-06i 3.0e-08 + 2.0e-08i -9.8e-07 + 2.0e-07i -9.4e-08 + 1.2e-08i 1.8e-08 + 1.1e-08i -1.9e-06 + 9.5e-09i -2.4e-10 + 2.6e-10i 5.7e-09 + -3.3e-09i 3.2e-10 + -4.3e-10i 3.0e-10 + -3.1e-10i
H1:ASC-POP_B_PIT_OUT_DQ -1.2e-07 + 6.9e-07i 7.8e-08 + 5.8e-08i 6.9e-07 + -1.1e-07i -4.8e-08 + -2.7e-08i -2.0e-08 + 1.2e-09i 1.8e-06 + -1.9e-07i 2.0e-09 + -1.7e-10i -2.4e-09 + 1.3e-09i 1.0e-09 + -1.6e-10i -1.4e-10 + -5.8e-10i
H1:ASC-X_TR_A_PIT_OUT_DQ 3.6e-07 + -9.4e-07i 7.9e-09 + 7.4e-09i -5.6e-07 + 7.2e-09i -1.6e-08 + 9.6e-09i -1.7e-07 + -9.1e-08i -1.2e-05 + 5.4e-06i -1.0e-08 + 5.9e-09i -9.9e-09 + 5.6e-09i -2.7e-10 + 6.2e-10i 3.6e-10 + -1.3e-10i
H1:ASC-X_TR_B_PIT_OUT_DQ 3.4e-07 + -8.7e-07i 7.2e-09 + 6.9e-09i -5.1e-07 + 6.0e-10i -8.5e-09 + 6.8e-09i -1.6e-07 + -8.6e-08i -1.1e-05 + 5.0e-06i -9.6e-09 + 5.1e-09i -9.4e-09 + 5.1e-09i -8.6e-10 + 7.0e-10i -5.3e-11 + 7.8e-11i
H1:ASC-Y_TR_A_PIT_OUT_DQ 2.3e-07 + -5.7e-07i 7.2e-09 + 1.1e-08i -8.6e-07 + -1.4e-07i 1.2e-08 + -6.4e-09i 1.7e-07 + 6.6e-08i 1.3e-05 + -9.4e-06i 1.0e-08 + -5.6e-09i -1.1e-08 + 5.8e-09i 1.2e-09 + -5.7e-10i -1.0e-09 + 5.4e-10i
H1:ASC-Y_TR_B_PIT_OUT_DQ -7.6e-08 + 4.7e-07i 9.1e-10 + 7.9e-10i -1.5e-07 + 4.6e-08i 2.6e-09 + -9.7e-10i 5.5e-08 + 1.4e-08i 1.6e-06 + -1.4e-06i 1.5e-09 + -9.2e-10i -1.5e-09 + 8.4e-10i 1.7e-09 + -8.8e-10i -1.7e-09 + 9.3e-10i
(2015) vajente@caltech.edu
evan.hall@LIGO.ORG - 01:54, Sunday 06 March 2016 (25899)

We also retuned the test mass angle-to-length feedforward in order to recover the sensitvity from 10 to 20 Hz.

There is some excess cattering from 20 to 70 Hz compared to the DARM reference trace (taken before last month's ASC changes), and there is still excess jitter coupling.

robert.ward@LIGO.ORG - 02:07, Sunday 06 March 2016 (25900)
Apparently there is a length limit to alog entries, and two full html'ed sensing matrices exceed it.  Here is the YAW matrix from tonight.



Sensing matrix measurement


Sensing matrix (abs)

Excitation: H1:ASC-INP1_Y_SM_EXC H1:ASC-PRC1_Y_SM_EXC H1:ASC-PRC2_Y_SM_EXC H1:ASC-MICH_Y_SM_EXC H1:ASC-SRC1_Y_SM_EXC H1:ASC-SRC2_Y_SM_EXC H1:ASC-DHARD_Y_SM_EXC H1:ASC-CHARD_Y_SM_EXC H1:ASC-DSOFT_Y_SM_EXC H1:ASC-CSOFT_Y_SM_EXC
Monitor channel: H1:ASC-INP1_Y_SM_DQ H1:ASC-PRC1_Y_SM_DQ H1:ASC-PRC2_Y_SM_DQ H1:ASC-MICH_Y_SM_DQ H1:ASC-SRC1_Y_SM_DQ H1:ASC-SRC2_Y_SM_DQ H1:ASC-DHARD_Y_SM_DQ H1:ASC-CHARD_Y_SM_DQ H1:ASC-DSOFT_Y_SM_DQ H1:ASC-CSOFT_Y_SM_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ 6.1e-06 1.7e-06 2.0e-05 4.3e-06 1.0e-04 2.0e-04 5.1e-07 2.9e-09 9.9e-09 9.3e-09
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 1.1e-02 8.1e-03 9.5e-02 2.2e-02 3.7e-01 7.3e-01 3.0e-04 7.1e-06 1.3e-04 2.2e-05
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ 6.8e-02 2.9e-03 3.4e-02 6.7e-02 9.9e-02 6.2e-01 3.4e-04 1.3e-05 4.2e-04 9.7e-06
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ 1.3e-02 3.7e-04 9.3e-03 1.2e-02 3.3e-02 1.8e-01 3.6e-05 1.4e-05 8.8e-05 1.0e-05
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ 3.3e-02 5.2e-03 6.7e-02 2.7e-02 3.4e-01 6.3e-01 3.6e-03 4.0e-05 8.3e-05 4.4e-05
H1:ASC-AS_B_DC_YAW_OUT_DQ 6.6e-06 1.0e-06 1.3e-05 1.9e-06 8.9e-05 1.5e-04 3.5e-07 1.7e-09 9.8e-09 1.3e-08
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ 2.8e-02 1.2e-02 1.3e-01 1.2e-02 6.6e-01 1.1e+00 2.7e-04 2.6e-05 8.7e-05 4.6e-05
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 6.6e-02 7.6e-04 2.2e-02 5.9e-02 2.8e-02 6.7e-01 3.2e-04 3.6e-06 3.8e-04 1.1e-05
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 9.5e-03 3.9e-04 8.2e-03 8.3e-03 8.7e-03 1.4e-01 1.2e-04 5.4e-06 6.8e-05 4.3e-06
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ 3.8e-02 2.8e-03 4.1e-02 1.7e-02 3.3e-01 5.0e-01 3.1e-03 5.0e-05 9.5e-05 3.4e-05
H1:ASC-AS_C_YAW_OUT_DQ 1.9e-06 4.6e-07 6.1e-06 2.0e-07 2.0e-05 6.5e-05 7.7e-08 2.7e-09 2.4e-09 5.9e-09
H1:ASC-REFL_A_DC_YAW_OUT_DQ 1.0e-05 2.9e-07 7.6e-06 4.5e-06 7.9e-07 3.3e-05 1.6e-08 6.9e-08 5.8e-08 2.8e-08
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ 2.8e+00 6.8e-03 2.5e-01 2.3e-02 1.4e-02 6.5e-01 5.1e-05 3.7e-04 3.4e-05 9.8e-05
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ 5.8e-01 2.1e-04 2.4e-02 3.2e-03 1.7e-03 4.9e-02 5.8e-06 1.1e-04 8.4e-06 9.4e-06
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ 3.1e+00 2.0e-02 1.3e-01 8.6e-03 5.4e-03 5.4e-01 3.6e-05 4.8e-04 4.4e-05 3.1e-06
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ 7.2e-01 5.4e-03 3.9e-02 4.6e-03 8.1e-03 1.1e-01 1.5e-05 1.2e-04 2.5e-05 4.0e-06
H1:ASC-REFL_B_DC_YAW_OUT_DQ 2.0e-04 6.7e-07 6.5e-06 1.7e-06 1.1e-06 3.6e-05 1.2e-08 4.0e-08 1.3e-08 5.8e-09
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 1.9e+00 3.8e-02 2.7e-01 1.9e-02 1.4e-02 7.8e-01 3.4e-05 4.5e-04 4.6e-05 9.2e-05
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 5.5e-01 7.6e-03 4.6e-02 3.0e-03 2.3e-03 1.3e-01 6.7e-06 6.7e-05 8.6e-06 1.6e-05
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ 2.3e+00 1.0e-02 1.8e-01 1.2e-02 3.2e-02 6.6e-01 3.3e-05 5.8e-04 9.9e-06 4.0e-05
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ 7.5e-01 1.1e-03 9.2e-02 1.4e-02 1.8e-02 2.5e-01 4.4e-05 1.9e-04 4.2e-05 2.5e-05
H1:ASC-POP_A_YAW_OUT_DQ 5.3e-07 5.3e-07 1.8e-06 1.0e-07 1.9e-07 7.6e-06 2.5e-10 9.9e-09 4.4e-10 4.4e-10
H1:ASC-POP_B_YAW_OUT_DQ 1.4e-06 4.0e-07 6.4e-07 2.6e-08 1.2e-07 3.6e-06 2.8e-10 7.5e-09 3.1e-10 4.2e-10
H1:ASC-X_TR_A_YAW_OUT_DQ 1.3e-06 5.9e-08 3.4e-07 2.7e-08 1.3e-06 6.1e-06 1.5e-08 1.6e-08 4.3e-10 1.8e-11
H1:ASC-X_TR_B_YAW_OUT_DQ 1.1e-06 5.2e-08 3.1e-07 3.1e-08 1.2e-06 6.6e-06 1.4e-08 1.4e-08 1.8e-09 1.5e-09
H1:ASC-Y_TR_A_YAW_OUT_DQ 1.3e-06 6.4e-08 3.1e-07 4.6e-08 1.5e-06 3.5e-06 1.6e-08 1.6e-08 3.7e-10 2.9e-10
H1:ASC-Y_TR_B_YAW_OUT_DQ 2.4e-07 2.0e-08 1.6e-07 1.9e-08 7.9e-07 6.8e-06 6.2e-09 6.2e-09 1.8e-09 1.9e-09

Coherence matrix

Excitation: H1:ASC-INP1_Y_SM_EXC H1:ASC-PRC1_Y_SM_EXC H1:ASC-PRC2_Y_SM_EXC H1:ASC-MICH_Y_SM_EXC H1:ASC-SRC1_Y_SM_EXC H1:ASC-SRC2_Y_SM_EXC H1:ASC-DHARD_Y_SM_EXC H1:ASC-CHARD_Y_SM_EXC H1:ASC-DSOFT_Y_SM_EXC H1:ASC-CSOFT_Y_SM_EXC
Monitor channel: H1:ASC-INP1_Y_SM_DQ H1:ASC-PRC1_Y_SM_DQ H1:ASC-PRC2_Y_SM_DQ H1:ASC-MICH_Y_SM_DQ H1:ASC-SRC1_Y_SM_DQ H1:ASC-SRC2_Y_SM_DQ H1:ASC-DHARD_Y_SM_DQ H1:ASC-CHARD_Y_SM_DQ H1:ASC-DSOFT_Y_SM_DQ H1:ASC-CSOFT_Y_SM_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ 0.04 0.57 0.90 0.81 1.00 0.43 1.00 0.04 0.34 0.46
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 0.01 0.56 0.92 0.97 1.00 0.27 1.00 0.07 0.98 0.71
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ 0.04 0.04 0.18 1.00 0.82 0.03 1.00 0.18 0.99 0.14
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ 0.04 0.02 0.31 0.98 0.94 0.08 0.95 0.59 0.98 0.50
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ 0.09 0.54 0.88 0.97 1.00 0.39 1.00 0.43 0.86 0.63
H1:ASC-AS_B_DC_YAW_OUT_DQ 0.06 0.36 0.81 0.52 1.00 0.30 1.00 0.01 0.33 0.57
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ 0.02 0.52 0.90 0.89 0.99 0.31 1.00 0.35 0.90 0.85
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 0.05 0.00 0.10 0.99 0.36 0.05 1.00 0.01 0.99 0.22
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 0.05 0.04 0.40 1.00 0.69 0.08 1.00 0.58 1.00 0.65
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ 0.10 0.19 0.67 0.98 1.00 0.22 1.00 0.68 0.94 0.61
H1:ASC-AS_C_YAW_OUT_DQ 0.12 0.61 0.94 0.53 1.00 0.95 1.00 0.66 0.64 0.95
H1:ASC-REFL_A_DC_YAW_OUT_DQ 0.64 0.43 0.96 0.03 0.57 0.24 0.05 0.14 0.10 0.07
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ 1.00 0.44 0.97 0.66 0.37 0.14 0.44 0.89 0.09 0.46
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ 1.00 0.06 0.96 0.41 0.41 0.07 0.15 0.92 0.09 0.10
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ 1.00 0.96 0.97 0.16 0.19 0.30 0.18 0.89 0.08 0.00
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ 1.00 0.92 0.96 0.29 0.80 0.14 0.31 0.85 0.24 0.01
H1:ASC-REFL_B_DC_YAW_OUT_DQ 1.00 0.83 0.94 0.02 0.72 0.28 0.07 0.09 0.02 0.01
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 0.99 0.95 0.97 0.87 0.32 0.19 0.58 0.98 0.40 0.76
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 1.00 0.96 0.97 0.50 0.31 0.18 0.28 0.85 0.13 0.43
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ 1.00 0.78 0.97 0.65 0.86 0.29 0.55 0.98 0.02 0.34
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ 0.99 0.12 0.97 0.93 0.82 0.13 0.93 0.98 0.73 0.55
H1:ASC-POP_A_YAW_OUT_DQ 0.15 0.99 0.97 0.14 0.67 0.34 0.05 0.95 0.05 0.07
H1:ASC-POP_B_YAW_OUT_DQ 0.87 0.99 0.95 0.01 0.80 0.26 0.06 0.89 0.01 0.06
H1:ASC-X_TR_A_YAW_OUT_DQ 0.61 0.48 0.60 0.07 0.99 0.21 1.00 1.00 0.24 0.00
H1:ASC-X_TR_B_YAW_OUT_DQ 0.53 0.45 0.58 0.37 0.99 0.29 1.00 1.00 0.97 0.98
H1:ASC-Y_TR_A_YAW_OUT_DQ 0.70 0.70 0.69 0.78 0.99 0.18 1.00 1.00 0.86 0.83
H1:ASC-Y_TR_B_YAW_OUT_DQ 0.02 0.04 0.12 0.25 0.94 0.15 1.00 1.00 0.99 0.99

Sensing matrix (complex)

Excitation: H1:ASC-INP1_Y_SM_EXC H1:ASC-PRC1_Y_SM_EXC H1:ASC-PRC2_Y_SM_EXC H1:ASC-MICH_Y_SM_EXC H1:ASC-SRC1_Y_SM_EXC H1:ASC-SRC2_Y_SM_EXC H1:ASC-DHARD_Y_SM_EXC H1:ASC-CHARD_Y_SM_EXC H1:ASC-DSOFT_Y_SM_EXC H1:ASC-CSOFT_Y_SM_EXC
Monitor channel: H1:ASC-INP1_Y_SM_DQ H1:ASC-PRC1_Y_SM_DQ H1:ASC-PRC2_Y_SM_DQ H1:ASC-MICH_Y_SM_DQ H1:ASC-SRC1_Y_SM_DQ H1:ASC-SRC2_Y_SM_DQ H1:ASC-DHARD_Y_SM_DQ H1:ASC-CHARD_Y_SM_DQ H1:ASC-DSOFT_Y_SM_DQ H1:ASC-CSOFT_Y_SM_DQ
H1:ASC-AS_A_DC_YAW_OUT_DQ -4.7e-06 + 3.8e-06i 1.0e-06 + 1.3e-06i 5.6e-06 + 2.0e-05i -3.2e-06 + 2.8e-06i -8.2e-05 + 5.6e-05i 1.3e-04 + 1.4e-04i -4.4e-07 + 2.5e-07i 2.9e-09 + 2.1e-10i 7.8e-09 + -6.1e-09i -8.5e-09 + 3.7e-09i
H1:ASC-AS_A_RF36_I_YAW_OUT_DQ 1.1e-02 + 4.4e-03i -6.0e-03 + -5.4e-03i -5.6e-02 + -7.6e-02i 1.8e-02 + -1.3e-02i 3.6e-01 + -1.1e-01i -3.6e-01 + -6.3e-01i 2.4e-04 + -1.8e-04i 6.4e-06 + -3.2e-06i 1.1e-04 + -6.7e-05i 2.2e-05 + -5.5e-06i
H1:ASC-AS_A_RF36_Q_YAW_OUT_DQ -1.3e-03 + -6.8e-02i -2.9e-03 + -5.6e-04i -4.0e-03 + -3.4e-02i -5.4e-02 + 3.8e-02i 9.5e-02 + -3.0e-02i 2.3e-01 + -5.7e-01i -2.9e-04 + 1.8e-04i 1.2e-05 + -3.4e-06i -3.4e-04 + 2.4e-04i 7.9e-06 + -5.6e-06i
H1:ASC-AS_A_RF45_I_YAW_OUT_DQ -3.0e-03 + 1.2e-02i 1.9e-04 + 3.2e-04i -4.8e-03 + 8.0e-03i 1.0e-02 + -6.4e-03i -3.2e-02 + 9.8e-03i -1.0e-01 + 1.5e-01i -1.0e-05 + 3.5e-05i -1.3e-05 + -4.9e-06i 7.7e-05 + -4.1e-05i -1.0e-05 + 1.2e-06i
H1:ASC-AS_A_RF45_Q_YAW_OUT_DQ -2.5e-02 + 2.2e-02i 3.4e-03 + 3.9e-03i 2.5e-02 + 6.2e-02i -2.2e-02 + 1.6e-02i -2.6e-01 + 2.2e-01i 5.6e-01 + 2.9e-01i -3.2e-03 + 1.7e-03i 3.7e-05 + -1.6e-05i 6.8e-05 + -4.8e-05i -3.8e-05 + 2.2e-05i
H1:ASC-AS_B_DC_YAW_OUT_DQ 6.6e-06 + 1.4e-07i -4.3e-07 + -9.4e-07i 5.4e-07 + -1.3e-05i 1.4e-06 + -1.3e-06i 8.0e-05 + -4.0e-05i -8.9e-05 + -1.2e-04i 3.0e-07 + -1.8e-07i -7.4e-10 + -1.5e-09i -7.8e-09 + 6.0e-09i 9.8e-09 + -7.8e-09i
H1:ASC-AS_B_RF36_I_YAW_OUT_DQ -2.4e-02 + -1.5e-02i 8.7e-03 + 7.8e-03i 7.4e-02 + 1.1e-01i -1.0e-02 + 6.9e-03i -6.4e-01 + 1.2e-01i 5.6e-01 + 9.8e-01i -2.0e-04 + 1.9e-04i -2.4e-05 + 9.4e-06i -7.5e-05 + 4.3e-05i -4.0e-05 + 2.4e-05i
H1:ASC-AS_B_RF36_Q_YAW_OUT_DQ 2.0e-03 + -6.6e-02i -6.4e-04 + 4.2e-04i 1.7e-02 + -1.3e-02i -4.8e-02 + 3.4e-02i -6.5e-03 + -2.7e-02i 3.8e-01 + -5.5e-01i -2.7e-04 + 1.8e-04i 7.9e-07 + -3.6e-06i -3.2e-04 + 2.0e-04i 1.0e-05 + -3.0e-06i
H1:ASC-AS_B_RF45_I_YAW_OUT_DQ 3.5e-03 + -8.8e-03i 3.5e-04 + 1.8e-04i 8.2e-03 + -3.4e-04i -7.0e-03 + 4.6e-03i -7.5e-04 + -8.6e-03i 1.2e-01 + -6.7e-02i 1.1e-04 + -5.6e-05i 5.4e-06 + -1.0e-07i -5.9e-05 + 3.3e-05i 4.3e-06 + 2.9e-07i
H1:ASC-AS_B_RF45_Q_YAW_OUT_DQ 3.8e-02 + -8.7e-04i 3.4e-04 + -2.7e-03i 1.8e-02 + -3.7e-02i 1.4e-02 + -9.7e-03i 2.8e-01 + -1.7e-01i -4.2e-01 + -2.7e-01i 2.8e-03 + -1.3e-03i -4.9e-05 + -1.0e-05i -5.8e-05 + 7.5e-05i 1.3e-05 + -3.2e-05i
H1:ASC-AS_C_YAW_OUT_DQ -1.1e-06 + 1.6e-06i 3.3e-07 + 3.1e-07i 3.1e-06 + 5.3e-06i -1.5e-07 + 1.3e-07i -2.8e-06 + 1.9e-05i 6.1e-05 + -2.2e-05i -6.2e-08 + 4.5e-08i -2.7e-09 + -1.1e-10i 2.4e-09 + 5.2e-11i -5.4e-09 + 2.4e-09i
H1:ASC-REFL_A_DC_YAW_OUT_DQ -1.8e-06 + 1.0e-05i 2.9e-07 + -3.7e-09i -7.5e-06 + -9.2e-07i 2.9e-07 + 4.5e-06i 7.7e-07 + 1.7e-07i -1.7e-05 + 2.9e-05i -1.2e-08 + 1.1e-08i 6.9e-08 + -2.1e-09i 4.0e-08 + 4.3e-08i 2.7e-08 + 7.7e-09i
H1:ASC-REFL_A_RF9_I_YAW_OUT_DQ -3.5e-01 + 2.8e+00i 6.8e-03 + 6.3e-04i 2.4e-01 + 3.6e-02i 2.2e-02 + -6.3e-03i -1.4e-02 + 4.9e-03i 3.9e-01 + -5.1e-01i 4.5e-05 + -2.4e-05i 3.4e-04 + -1.5e-04i 3.4e-05 + 2.0e-06i -9.0e-05 + 3.9e-05i
H1:ASC-REFL_A_RF9_Q_YAW_OUT_DQ -7.6e-02 + 5.8e-01i -5.5e-06 + 2.1e-04i 2.4e-02 + 3.7e-03i 3.2e-03 + -3.9e-04i -6.3e-04 + 1.6e-03i 3.6e-02 + -3.3e-02i 5.8e-06 + 4.7e-07i 1.0e-04 + -4.5e-05i 7.8e-06 + 3.3e-06i -8.5e-06 + 3.9e-06i
H1:ASC-REFL_A_RF45_I_YAW_OUT_DQ -4.6e-01 + 3.1e+00i -2.0e-02 + 2.3e-03i -1.3e-01 + -1.8e-02i -3.6e-03 + 7.8e-03i 5.3e-03 + 1.2e-03i -3.3e-01 + 4.3e-01i -2.0e-05 + 3.0e-05i 4.4e-04 + -2.0e-04i -1.5e-05 + 4.1e-05i -1.7e-06 + -2.6e-06i
H1:ASC-REFL_A_RF45_Q_YAW_OUT_DQ -9.9e-02 + 7.2e-01i -5.4e-03 + 7.3e-04i -3.9e-02 + -6.0e-03i 2.3e-03 + 4.0e-03i 8.1e-03 + 3.3e-04i -7.3e-02 + 8.8e-02i -1.1e-05 + 1.1e-05i 1.1e-04 + -4.1e-05i -4.4e-06 + 2.5e-05i -3.8e-06 + 1.2e-06i
H1:ASC-REFL_B_DC_YAW_OUT_DQ 2.4e-05 + -2.0e-04i 6.7e-07 + -7.6e-08i 6.5e-06 + 7.4e-07i -1.1e-06 + -1.2e-06i -8.5e-07 + -6.5e-07i 2.1e-05 + -3.0e-05i 5.2e-09 + -1.1e-08i -3.4e-08 + 2.0e-08i -1.2e-08 + -4.6e-09i 9.1e-10 + 5.7e-09i
H1:ASC-REFL_B_RF9_I_YAW_OUT_DQ 3.1e-01 + -1.9e+00i 3.8e-02 + -3.2e-03i 2.7e-01 + 3.9e-02i 1.6e-02 + -1.0e-02i -1.4e-02 + -1.1e-03i 4.3e-01 + -6.6e-01i 2.4e-05 + -2.4e-05i 4.0e-04 + -1.9e-04i 2.9e-05 + -3.6e-05i -8.1e-05 + 4.3e-05i
H1:ASC-REFL_B_RF9_Q_YAW_OUT_DQ 8.5e-02 + -5.4e-01i 7.6e-03 + -6.9e-04i 4.5e-02 + 6.7e-03i 2.3e-03 + -1.9e-03i -2.1e-03 + 1.1e-03i 8.8e-02 + -9.8e-02i 4.8e-06 + -4.6e-06i 6.1e-05 + -2.6e-05i 3.3e-06 + -7.9e-06i -1.5e-05 + 7.0e-06i
H1:ASC-REFL_B_RF45_I_YAW_OUT_DQ 3.1e-01 + -2.3e+00i 9.8e-03 + -1.9e-03i -1.8e-01 + -2.6e-02i -1.1e-02 + 4.4e-03i 2.8e-02 + 1.6e-02i -3.8e-01 + 5.4e-01i -2.7e-05 + 1.9e-05i 5.2e-04 + -2.6e-04i -4.4e-06 + -8.9e-06i 3.7e-05 + -1.4e-05i
H1:ASC-REFL_B_RF45_Q_YAW_OUT_DQ 9.5e-02 + -7.4e-01i 8.5e-04 + -7.5e-04i -9.0e-02 + -1.5e-02i -1.3e-02 + 5.8e-03i 1.7e-02 + 6.6e-03i -1.5e-01 + 2.0e-01i -2.5e-05 + 3.6e-05i 1.7e-04 + -8.2e-05i -3.4e-05 + 2.5e-05i 2.4e-05 + -7.3e-06i
H1:ASC-POP_A_YAW_OUT_DQ -1.3e-07 + -5.1e-07i -5.3e-07 + 8.0e-08i -1.8e-06 + -1.9e-07i -7.1e-08 + 7.3e-08i 1.8e-07 + 4.7e-08i -4.6e-06 + 6.1e-06i -2.4e-10 + 7.2e-11i 8.7e-09 + -4.7e-09i -3.0e-10 + 3.2e-10i 4.0e-10 + -1.8e-10i
H1:ASC-POP_B_YAW_OUT_DQ 1.6e-07 + -1.4e-06i -4.0e-07 + 6.0e-08i 6.4e-07 + 6.8e-08i 2.5e-08 + 4.0e-09i -1.1e-07 + -6.3e-08i 1.7e-06 + -3.1e-06i 1.9e-10 + -2.0e-10i -6.5e-09 + 3.8e-09i -2.9e-10 + 1.2e-10i -3.9e-10 + -1.6e-10i
H1:ASC-X_TR_A_YAW_OUT_DQ 3.6e-10 + -1.3e-06i 3.9e-08 + -4.3e-08i -1.3e-08 + -3.4e-07i -2.4e-08 + 1.2e-08i 1.2e-06 + -4.2e-07i 1.8e-07 + -6.1e-06i -1.3e-08 + 7.6e-09i -1.4e-08 + 7.7e-09i 3.6e-10 + -2.4e-10i 1.5e-11 + -1.0e-11i
H1:ASC-X_TR_B_YAW_OUT_DQ 2.9e-09 + -1.1e-06i 3.4e-08 + -3.9e-08i -1.7e-08 + -3.1e-07i -2.2e-08 + 2.1e-08i 1.1e-06 + -3.7e-07i 1.1e-06 + -6.5e-06i -1.2e-08 + 6.5e-09i -1.2e-08 + 6.7e-09i 1.5e-09 + -8.9e-10i 1.3e-09 + -7.2e-10i
H1:ASC-Y_TR_A_YAW_OUT_DQ -5.0e-08 + 1.3e-06i -6.4e-08 + -6.8e-09i 5.3e-08 + -3.0e-07i -3.6e-08 + 2.8e-08i 1.5e-06 + -1.6e-07i -4.7e-07 + -3.5e-06i -1.4e-08 + 7.5e-09i 1.4e-08 + -7.6e-09i 3.1e-10 + -1.9e-10i -2.4e-10 + 1.6e-10i
H1:ASC-Y_TR_B_YAW_OUT_DQ 1.3e-07 + -2.0e-07i -1.9e-08 + -1.4e-09i 1.1e-07 + -1.2e-07i -1.5e-08 + 1.2e-08i 7.8e-07 + -3.2e-08i 4.3e-06 + -5.2e-06i -5.4e-09 + 3.0e-09i 5.4e-09 + -3.0e-09i 1.5e-09 + -9.0e-10i -1.7e-09 + 9.7e-10i
(2015) vajente@caltech.edu
LHO VE
kyle.ryan@LIGO.ORG - posted 15:41, Saturday 05 March 2016 (25893)
Manually over-filled CP3
1505 -1525 hrs. local -> To and from Y-mid 

LN2 at exhaust after 2 mins with 1/2 turn open.  Next overfill to be Monday before 4:00 pm local 
H1 ISC
evan.hall@LIGO.ORG - posted 03:16, Saturday 05 March 2016 (25891)
Back to low noise

Rob, Evan

After some difficulties, we were able to get back to low noise locking.

Images attached to this report
H1 ISC
sheila.dwyer@LIGO.ORG - posted 02:25, Saturday 05 March 2016 (25890)
Daytime RF centering work

Jenne, Hang, Sheila, Rob,

durring the day today we worked on RF centering a bit more.  No real breakthroughs, but there are a few things to note:

The lock point of the MICH loop is not necessarily good when we are locked with RF centering.  The problem could be that we have the SRC uncontrolled when we are using RF centering, and currently the phasing of AS36 is set to maximize BS in Q, not to minimize SRM in Q which is what we probably want.  Or it could be that we need to check the gain matching on the quadrants for the 90 MHz centering. 

H1 CDS
evan.hall@LIGO.ORG - posted 02:09, Saturday 05 March 2016 (25889)
/ligo problems?

Rob, Evan

The control room workstations are freezing up every few minutes.

Some of the Macs on the wall are complaining intermittently that they can't find /ligo.

The AS port camera (cam18) is frozen (perhaps unrelated?).

LHO General
patrick.thomas@LIGO.ORG - posted 00:04, Saturday 05 March 2016 (25887)
Ops Evening Shift Summary
The verbal alarm handler crashed and was restarted. I copied the error into a sticky note on the alarm handler computer. There have been some issues with tidal that Evan H. has looked at. Evan H. and Robert W. have made it to DC readout and are still here.
H1 AOS
evan.hall@LIGO.ORG - posted 21:30, Friday 04 March 2016 - last comment - 01:59, Saturday 05 March 2016(25885)
X arm common offloading rails during ALS/IR search

It is happening pretty consistently during each lock acquision.

It looks like it started around noon today.

Images attached to this report
Comments related to this report
evan.hall@LIGO.ORG - 23:50, Friday 04 March 2016 (25886)

Shuttering ALS now causes violent fluctuations at the AS port, and causes the test masses to saturate.

evan.hall@LIGO.ORG - 01:59, Saturday 05 March 2016 (25888)

This is apparently because of a rewrite of the LOCKING_ALS state in ISC_LOCK which was not tested.

Both X and Y tidal are requested to go to "transition" (i.e., IMC-F offloading enabled), but Y does not do so. This causes X to offload IMC-F by itself (unsuccessfully).

Sleeps must be added to the guardian code in order to make both X and Y actually go to the "transition" state.

I have also removed some logging commands in the run method (as these continually output garbage to the logfile while the guardian loops over that method).

H1 General
nutsinee.kijbunchoo@LIGO.ORG - posted 16:04, Friday 04 March 2016 (25884)
Ops Day Shift Summary

Quick Summary: Commissioning.

(All time in UTC)

Between 17:00 - 19:00 Richard's student fixing all sky camera on the roof

17:54 Bryn and Vinny to EY to grab stuff, then EX CER (magnetometer work)

18:12 Corey to Optics lab

19:20 Kyle unloading batteries near OSB receiving area

19:34 Kyle done

21:04 Kyle going out to solder some high voltage cable at EX (WP5746)

22:08 Richard to either one or both of the end station

22:26 Vinny back

22:47 Richard + Fil back

23:20 Kyle + Gerado out

LHO VE
kyle.ryan@LIGO.ORG - posted 15:44, Friday 04 March 2016 (25883)
Soldered X2-8 HV cable in X-end VEA
Kyle, Gerardo 

~1330 - 1525 hrs. local -> To and from X-end VEA
H1 PSL
cheryl.vorvick@LIGO.ORG - posted 09:02, Friday 04 March 2016 - last comment - 17:18, Saturday 05 March 2016(25878)
PSL 10 day trends

Listed below are the past 10 day trends. For further in-depth analysis, please refer to Jason O., Pete K. or Rick S.

Images attached to this report
Comments related to this report
edmond.merilh@LIGO.ORG - 17:18, Saturday 05 March 2016 (25895)

I just noticed that Chreyl's name is attached to this. Not quite sure how it happened. 

H1 CDS
evan.hall@LIGO.ORG - posted 01:35, Friday 04 March 2016 - last comment - 11:07, Friday 04 March 2016(25877)
Cannot make excitations in certain ASC channels

Tried the following:

Also applies to a range of other ASC channels, like CHARD_Y_EXC, INP2_P_EXC, CHARD_P_A_EXC, etc.

I tried an excitation in LSC-XARM_EXC and it worked fine.

I tried awg clear 19 * in the diag terminal; no change.

Am I missing something here?

Comments related to this report
david.barker@LIGO.ORG - 11:07, Friday 04 March 2016 (25880)

the awgtpman process on h1asc was reporting the incorrect channel number for this channel (H1:ASC-CHARD_P_EXC is chnnum 20298 but the awgtpman was reporting it as 20304). Interestingly diaggui was able to excite CHARD_P_EXC despite the error but awggui was not. I also saw an error along the lines of "awgtpman cannot start as it is already running" and suspect the issue was from the bad restart of h1asc yesterday when there was a collision of DAC channels between h1asc and h1ascimc.

I killed to running awgtpman_h1asc and restarted it, all looks good now.

H1 ISC (ISC)
matthew.evans@LIGO.ORG - posted 18:28, Wednesday 02 March 2016 - last comment - 10:27, Monday 07 March 2016(25847)
DARM noise fluctuation vs. LVEA Temperature

Plotting the cross-correlated DARM noise (band 5) and LEVA temperature on the same plot doesn't show any obvious relationship.  The .fig is included in case someone has a good idea of how to use this data.

Images attached to this report
Non-image files attached to this report
Comments related to this report
lisa.barsotti@LIGO.ORG - 19:23, Wednesday 02 March 2016 (25848)
This analysis has been inspired by the recent investigations on the  L1 noise , that shows some correlation of DARM variations vs LVEA temperature.

By superimposing the current best L1 curve and the best H1 curve from O1 (see plot), one can see that the noise in the L1 bucket seems to have more "scattering looking" peaks (which can be modulated by temperature-induced alignment variations), while the H1 noise less so. 

The noise at high frequency is notably lower in L1, mostly due to the higher cavity pole frequency. 

Non-image files attached to this comment
kiwamu.izumi@LIGO.ORG - 14:50, Friday 04 March 2016 (25882)DetChar

I have extended Matt's previous analysis to the entire O1. In addition, I added another interesting channel, the vertical sensor of the top stage of ITMY. Here is the result.

I went through trend of some interesting channels where I was looking for signals showing similar variation to the band limited rms of the cross spectra. I came across ITMs' top stage vertical monitors and found them showing two relatively big bumps (actually dips in the raw signals) which seemingly match the ones in the band limited rms on Dec 2nd and Dec 29th. However, even through they look like showing a good agreement in the last half of the O1 period, the first half does not show an obvious correlation. Does this mean that the modulation mechanism of the noise level changed in the middle of the run and somehow noise level became sensitive to vertical displacement of ITMs or in-chamber temperature ?

Images attached to this comment
Non-image files attached to this comment
kiwamu.izumi@LIGO.ORG - 10:27, Monday 07 March 2016 (25910)

For completeness, I have looked at other vertical monitors. Here is the result. They all show qualitatively the same behavior more or less. The fig file can be found on a server.


 

Images attached to this comment
H1 SEI (ISC)
jim.warner@LIGO.ORG - posted 14:34, Wednesday 02 March 2016 - last comment - 09:44, Friday 04 March 2016(25842)
Plans for wind fence testing at LHO

I've been slowly trying to get stuff figured out for testing a wind fence set up at LHO, and am getting ready to try to set something up. I'll summarize where I think things are here.

Currently, I want to try a small, cheap wind fence at EX, mostly to explore how effective screens are at slowing wind, effects on ground motion and tumbleweed build up. The fence would be a couple of 4x4-ish 12-15 foot posts and some fine polymer netting like that used around tennis courts, gardens and the like. It may be necessary to add guy lines, as well.  In addition to the fence, Richard has said he will help me get an STS buried at EX, similar to Robert's set up at EY, and we are ordering 3 anemometers with stand alone data collection so no changes need to be made to CDS for this. I think this set up will allow me to look at a few of the concerns that people have brought up. So far the concerns I've heard are:

1. Increased ground motion. Fences slow wind by applying a force to the airstream, this is transmitted to the ground and produces increased tilt and other high frequency motion. I think the tilt can be addressed by placing the fence some few tens of meters from the building, per Robert's measurements of building tilt. Higher frequency motion can hopefully be addressed by design of the fence support structure, but we'll have to see how bad the motion is.

2. Similarly, the fence could make airflow more turbulent. I suspect that airflow at the building level is probably turbulent anyway. Hopefully, a well designed fence push turbulent flows around the building, while slowing most of the air makes it through.

3. Tumbleweed build up. Anything that blocks the wind will gather tumbleweeds around here, which could make a fence a fire hazard and maintenance issue.  This  could be addressed by leaving a gap at the bottom. The airflow below a few feet probably isn't a significant source of problems for us, but I don't know how big this gap would need to be. I also plan on using a mesh fine enough that tumbleweeds won't stick to the fence very easily. Industrial fences are flame resistant, and won't ignite on their own.

4. Wind damage. We have seen winds above 100 mph during a storm, this would create very high loads on any fence. I haven't been able to figure out how to calculate wind loads on a permeable wall yet, but Civil Engineers have building codes dealing with this. For my test, I'm trying to get some idea of the loads involved with moderatewind, and just making the fence so that the mesh will tear free in a way that won't damage the EX building if the wind gets too bad. Industrial fences are designed to stand similar wind loads, and their screens are held in place with replaceable break-away clips to prevent damage.

5. Cost/size. BrianL talked to a company that makes industrial fences a few months ago. The ball park figure for a 40 x 200 foot fence was about $250,000. That was a first pass at a price and the company had some suggestions at how to cut down on the cost. This price also needs to be weighed against the 10-15 % of down time we have due to wind. Something of that size would also probably have to be approved by the DOE. It's also unclear if we would have to completely surround each endstation, or if we could get away with less coverage. Probably, we don't need to "protect" EY along the X-axis, or EX along the Y-axis.

Comments, criticism, praise are all welcome.

Comments related to this report
john.worden@LIGO.ORG - 08:29, Thursday 03 March 2016 (25855)

Comments;

Any break away components will need to be constrained so the EPA doesn't come after us for polluting the desert. I suggest that even a temporary test fence be built to withstand any expected wind/snow/tumbleweed loads.

Be aware that any wind speed and direction measurements are likely influenced by ground effects until you are well above the ground and nearby obstructions - say 25- 50 feet???

brian.lantz@LIGO.ORG - 09:44, Friday 04 March 2016 (25879)FMP
Thanks John. 
The ones I saw advertised had a cable top and bottom which suspended the wind fabric. The top attachments from the fabric to the cable were "permanent" and the attachments to the lower cable were the break-away. This should allow it to yield to the wind load, but to keep it from blowing away and causing more trouble.
H1 SUS (ISC)
brett.shapiro@LIGO.ORG - posted 22:54, Tuesday 01 March 2016 - last comment - 11:29, Friday 04 March 2016(25829)
Quad Matlab model updates

svn up at .../SusSVN/sus/trunk/QUAD/Common/MatlabTools/QuadModel_Production/

Updates:

1) Added an option for optical lever damping that actuates at the PUM (L2) stage. Like top mass damping, this can be imported from the sites, or added in locally.

2) Added options for violin modes at all stages. Previously this was only available for the fibers. You can choose how many modes you want at each stage, doesn't have to be the same number.

3) Added an option to load damping from a variable in the matlab workspace. Previously this could only be done from a saved file or imported from the sites.

 

Detailed instructions fpr generate_QUAD_Model_Production.m are commented into the header. See G1401132 for a summary of the features, and some basic instructions on running the model.

I am tagging this to the svn now as

quadmodelproduction-rev7995_ssmake4pv2eMB5f_fiber-rev3601_h1etmy-rev7915_released-2016-03-01.mat

...the file is large (386 MB) so it is slow to upload.

The tagged model includes 25 violin modes for the fibers, 20 for the uim-pum wire, 15 for the top-uim wire, and 10 for the top-most wire. For the 25 fiber violin modes, the first 8 are based on measured frequencies from h1etmy, the remainder are modeled frequencies. All metal wire modes are modeled values. The oplev filters are turned off in this model as well (I imported the filters from LHO, and they were turned off at the time).

 

For reference, this is a summary of the history of model revisions in the svn:

generate_QUAD_Model_Production.m

rev 7359: now reads foton files for main chain and reaction damping

rev 7436: Changed hard coded DAMP gains to get the correct values for LHO ETMX specifically.

rev 7508: Restored damping filter choice for P to level 2.1 filters as opposed to Keita's modification. Cleaned up error checking code on foton filter files, and allowed handling of filter archive files and files with the full path.

rev 7639: renaming lho etmy parameter file

rev 7642: Adding custom parameter file for each quad. Each one is a copy of h1etmy at this point, since that one has the most available data.

rev 7646: added ability to read live filters from sites, and ability to load custom parameter files for each suspension

rev 7652: updated to allow damping filters from sites from a specific gps time (in addition to the live reading option)

planned future revision - seismic noise will progate through the damping filters as in real life. i.e the OSEMs are relative sensors and measure the displacement between the cage and the suspension.

rev 7920: big update - added sus point reaction forces, top OSEMs act between cage and sus, replaced append/connect command with simulink files

rev 7995: added oplev damping with actuation at the PUM (L2); added options for violin modes at all stages, rather than just for the fibers; added option to load damping from a variable in the workspace, in addition to the existing features of loading damping from a previously saved or importing from sites.

ssmake4pv2eMB5f_fiber.m

no recent (at least 4 years) functional changes have been made to this file.

* quadopt_fiber.m

- rev 2731: name of file changed to quadopt_fiber.m, removing the date to avoid confusion with Mark Barton's Mathametica files.

- rev 6374: updated based on H1ETM fit in 10089.

- rev 7392: updated pend.ln to provide as-built CM heights according to T1500046

- rev 7912: the update described in this log, where the solidworks values for the inertias of the test mass and pum were put into the model, and the model was then refit.  Same as h1etmy.m.

* h1etmy.m

- rev 7640: created the H1ETMY parameter file based on the fit discussed in 10089.

- rev 7911: the update described in this log, where the solidworks values for the inertias of the test mass and pum were put into the model, and the model was then refit. Same as quadopt_fiber.m.

Comments related to this report
brett.shapiro@LIGO.ORG - 11:29, Friday 04 March 2016 (25881)

I added more comments to the header of the model file, generate_QUAD_Model_Production.m, explaining how to run the model with measured violin modes and Qs. I also clarified the comments on including custom damping. I updated the feature summary doc G1401132 with the same information.

H1 CAL
sheila.dwyer@LIGO.ORG - posted 20:33, Monday 29 February 2016 - last comment - 16:16, Saturday 05 March 2016(25788)
change to whitening filters for DELTAL_EXTERNAL

We have changed the whitening filters in CAL_DELTAL_EXTERNAL_DQ, to the filter described in

25785

We are now using 6 zeros at 0.3 Hz and 6 poles at 30 Hz.  Hopefully this will take care of the aliasing problem with DTT, and we can use the calibrated channel when making comparisons with seismic/ sus or PEM channels.  

This doesn't impact the GDS pipeline, only CAL_DELTAL_EXTERNAL

Comments related to this report
evan.hall@LIGO.ORG - 16:16, Saturday 05 March 2016 (25894)

No evidence of aliasing in DTT with the new whitening settings.

Images attached to this comment
H1 CDS (CAL)
sheila.dwyer@LIGO.ORG - posted 18:20, Tuesday 19 January 2016 - last comment - 15:32, Saturday 05 March 2016(25034)
dangerous issue with changing DTT stop frequency when looking at CAL_DELTA_L

Robert, Sheila, Evan, Gabriele

I tried to look at one of Robert's injections from yesterday, and we noticed a dangerous bug, which had previously been reported by Annamaria and Robert 20410.  This is also the subject of https://bugzilla.ligo-wa.caltech.edu/bugzilla3/show_bug.cgi?id=804

When we changed the Stop frequency on the template, without changing anything else, the noise in DARM changes.  

This means we can't look at ISI, ASC, PEM, or SUS channels at the same time as DARM channels and get a proper representation of the DARM noise, which is what we need to be doing right now to improve our low frequency noise.  Can we trust coherence measurements between channels that have different sampling rates?

This is not the same problem as reported by Robert and Keita alog 22094

people have looked at the DTT manual and speculate that this could be because of the aggressive whitening on this channel, and the fact that DTT downsmaples before taking the spectrum.  

If there is no near term prospect for fixing the problem in DTT, then we would want to have less aggressive whitening for CAL_DELTA_L_EXTERNAL

Images attached to this report
Non-image files attached to this report
Comments related to this report
christopher.wipf@LIGO.ORG - 19:56, Wednesday 20 January 2016 (25064)

I spent a little time looking into this and added some details to the bug report. As you said, it seems to be an issue of high frequency noise leaking through the downsampling filter in DTT.

Until this gets fixed, any reason you can't use DARM_IN1 instead of DELTAL_EXTERNAL as your DARM channel? It's better whitened, so it doesn't suffer from this problem.

evan.hall@LIGO.ORG - 13:36, Monday 29 February 2016 (25785)

The dynamic range issue in the whitened channel can be improved by switching to five zeros at 0.3 Hz and five poles at 30 Hz.

The current whitening settings (five zeros at 1 Hz, five poles at 100 Hz) produce more than 70 dB of variation from 10 Hz to 8 kHz, and 130 dB of variation from 0.05 Hz to 10 Hz.

The new whitening settings can give less than 30 dB of variation from 10 Hz to 8 kHz, and 90 dB of variation from 0.05 Hz to 10 Hz.

We could also use 6 zeros at 0.3 Hz and 6 poles at 30 Hz, which would give 30 dB of variation from 10 Hz to 8 kHz, and 66 dB of variation from 0.05 Hz to 10 Hz.

Images attached to this comment
evan.hall@LIGO.ORG - 15:32, Saturday 05 March 2016 (25892)

The 6x p/z solution was implemented: LHO#25778

Displaying reports 61341-61360 of 86555.Go to page Start 3064 3065 3066 3067 3068 3069 3070 3071 3072 End