Displaying reports 67601-67620 of 77151.Go to page Start 3377 3378 3379 3380 3381 3382 3383 3384 3385 End
Reports until 13:49, Wednesday 05 February 2014
H1 AOS (ISC, SUS)
lisa.barsotti@LIGO.ORG - posted 13:49, Wednesday 05 February 2014 - last comment - 00:44, Thursday 06 February 2014(9847)
Mirrors move less, X arm stably locked on green
Everyone


- ITMX motion has been largely reduced by the seismic teem, now the motion at 0.5 Hz is around 0.03 urad, A LOT less than before;

- The tuning of the ETMX is still in progress, but in the meantime Stefan implemented a 'dirty' optical lever feedback which reduced the ETMX PIT motion by about a factor of 5 at 0.5 Hz. With the OL feedback on, ETMX PIT @ 0.5 Hz is around 0.1 urad. There is some gain peaking around 1 Hz.

- In this state, the one arm is stably locked on green with 32 uW (calibration to be confirmed) in transmission (~840 counts in ALS-C-TRX_A_LF_OUT) power fluctuations are small, around 5%. We are not seeing the 01 coming into resonance, so we can make a measurement of the frequency noise red/green. (P.S.: Sheila says that ~800 counts is a good number, corresponding to a good cavity alignment.)
Non-image files attached to this report
Comments related to this report
stefan.ballmer@LIGO.ORG - 00:44, Thursday 06 February 2014 (9872)
The OL design for ETMX PIT was based on Keita's vectfit of the ETMX L2 PIT to OL PIT plant:

sos(-0.000000198849,   [  -0.99974066400116;   0.00000000000000;  -1.00095625813547;      0.00000000000000;
                         -1.99993739410419;   0.99993764249344;  -2.00093113886515;      1.00093232796495;
                         -1.99994835681455;   0.99994838427413;  -1.99934725191269;      0.99934827919189;
                         -1.99996793385062;   0.99996797457313;  -1.99994110527832;      0.99994113352954;
                         -1.99997421429503;   0.99997458606360;  -1.99991282601661;      0.99991309284645;
                         -1.99998069701217;   0.99998073379973;  -1.99995244319874;      0.99995248011907;
                         -1.99998283879917;   0.99998288208110;  -1.99998212292679;      0.99998216522750;
                         -1.99999010413889;   0.99999013224953;  -1.99999127808431;      0.99999130800992;  ],"o")

or equivalently

zpk([-0.482248+i*2.71133;-0.482248-i*2.71133;-0.0712051+i*2.83338;-0.0712051-i*2.83338;
    -0.389292+i*3.12401;-0.389292-i*3.12401;-0.146104+i*3.36657;-0.146104-i*3.36657;
    -0.711974+i*8.43343;-0.711974-i*8.43343;-5.34064+i*15.7266;-5.34064-i*15.7266;7.63407+i*16.1483;
    7.63407-i*16.1483;15.6598],[-0.422847+i*2.68189;-0.422847-i*2.68189;-0.080837+i*2.7458;
    -0.080837-i*2.7458;-0.15783+i*3.13851;-0.15783-i*3.13851;-0.262356+i*3.29586;-0.262356-i*3.29586;
    -0.140231+i*3.40571;-0.140231-i*3.40571;-0.510849+i*8.1497;-0.510849-i*8.1497;
    -0.208194+i*9.98768;-0.208194-i*9.98768;-4.24951],-1.98998e-07)


This had three wrong half-plane zeros (and was therefore not invertable by switching poles and zeros) : 7.63407+i*16.1483; 7.63407-i*16.1483; 15.6598
To invert the plant, I moved the complex pole-pair to the left half-plane, and dropped the real pole completely.

On top of this inverse plant filter, I added zpk([0],[0.333333;0.333333],10,"n")*resgain(0.45,2,20) the shape the filter, and tuned it on.


H1 ISC
alexan.staley@LIGO.ORG - posted 13:45, Wednesday 05 February 2014 - last comment - 19:10, Wednesday 05 February 2014(9846)
EX Measurements

(Sheila, Alexa)

1. We wanted to re-visit the EX PLL shot noise measurement we had previously done.

2. WIth the EX PLL locked, the arm cavity well aligned, and the green beam flashing, we looked at the PDH error signal out of the demod IMON and measured the peak-to-peak of the signal to be 230mVpp

3. We went on to investigate the fringe wrapping we saw in the PDH amplitude spectrum at the error point. With the arm locked, we only saw a slight difference in the spectrum with the HEPA fans on or off (Sheila will attach pictures). There did not seem to be fringe wrapping, and the acoustic noise seemed minimal. I will look at the PDH shot noise again when I can misalign ITMX and see if the fringe wrapping is still there.. 

Comments related to this report
sheila.dwyer@LIGO.ORG - 19:10, Wednesday 05 February 2014 (9867)
The reference (fainter trace) is with hepa filter on, current trace with hepa filter on.
Images attached to this comment
H1 SUS
arnaud.pele@LIGO.ORG - posted 12:17, Wednesday 05 February 2014 (9842)
ETMY TF still looking good

Results of last set of ETMY transfer function after finishing the alignment (see this alog for alignment numbers) are attached below, and look similar to what was taken monday night. TMS team can start (and probably already did) work on the installation. SUS will go in the next days check for lower masses flag/osem centering as well as top mass verticals. 

Attached files :

H1 ETMY fiber after finishing alignment (in black) compared to first alignment (in orange) compared to LLO ETMX fiber in chamber. Main chain (1st pdf) and reaction chain (2nd pdf)

To notice :

- First pitch mode of the main chain fiber quads are shifted down (0.52Hz) compared to the model (0.562Hz). Cf p5 of first attachment.

Non-image files attached to this report
H1 SEI (SUS)
sheila.dwyer@LIGO.ORG - posted 11:06, Wednesday 05 February 2014 (9839)
the right sign helps

Jim Rich and Hugh have been working on the ITMX ISI, and found a sign flip. Here are plots of the sus witness sensors (L2WIT) and OpLevs:

Modified instructions for turning on ITMX ISI after a trip:

Of course this mght change, especially the stage 2 blends might work with a different set of blends.

Images attached to this report
H1 AOS
filiberto.clara@LIGO.ORG - posted 10:31, Wednesday 05 February 2014 (9838)
ETMY Arm Cavity Baffle -photo diode test
Looked at photo diode forward voltage for ETMY ACB per LIGO-T1100637.
PD forward voltage(≈ 0.5V)

Pin 13 & 12 
PD forward voltage: 0.428V

Pin 10 & 9 
PD forward voltage: 0.421V

Pin 7 & 6
PD forward voltage: 0.428V

Pin 4 & 3
PD forward voltage: 0.421V


Filiberto Clara & Mitchell
H1 SUS
thomas.vo@LIGO.ORG - posted 09:17, Wednesday 05 February 2014 - last comment - 11:10, Wednesday 05 February 2014(9836)
SUS at HAM4 @ 9:17 AM PT
Andres and Jeff working on SR2
Comments related to this report
thomas.vo@LIGO.ORG - 11:10, Wednesday 05 February 2014 (9841)
Finsihed at 11:10 AM PT
H1 AOS
thomas.vo@LIGO.ORG - posted 09:09, Wednesday 05 February 2014 - last comment - 13:08, Wednesday 05 February 2014(9834)
Mitch at West Bay @ 9:08 AM PT
Working on ACB with Apollo.
Comments related to this report
thomas.vo@LIGO.ORG - 11:44, Wednesday 05 February 2014 (9843)
Out for lunch at 11:44 AM PT
thomas.vo@LIGO.ORG - 13:08, Wednesday 05 February 2014 (9844)
Back at the West bay @ 1:08 PM PT
H1 AOS
jason.oberling@LIGO.ORG - posted 09:08, Wednesday 05 February 2014 - last comment - 10:21, Wednesday 05 February 2014(9833)
ETMy Cartridge Alignment
IAS: J. Oberling
SUS: B. Weaver, T. Sadecki
 
Finished the ETMy cartridge alignment yesterday.  The position & angular errors are as follows (all yaw reported as viewing the relevant optic from the top down):

Also measured & aligned the ERMy (Note: the ERMy is aligned parallel to the AR surface of the ETMy) and measured the gap between the ETMy and ERMy.

Comments related to this report
betsy.weaver@LIGO.ORG - 10:21, Wednesday 05 February 2014 (9837)

Note - we discovered yesterday that the Kentek gap detector was highly dependent on how level it's mounting was.  So, the measurement is only good to about +/-0.25mm.

H1 AOS
mitchell.robinson@LIGO.ORG - posted 08:02, Wednesday 05 February 2014 (9831)
ETM-Y ACB
Mitchell, Scott (Apollo)

The assembly of the Arm Cavity Baffle was completed yesterday. Final weights need to be taken then, it will be suspended from the solid stack to begin balancing.
H1 CDS
sheila.dwyer@LIGO.ORG - posted 06:51, Wednesday 05 February 2014 (9830)
h1ecat x1 restarted
It had the usual problem of asking me to choose a run time system in the active and run step, and not being able to log in.  
I also did an svn update, and got a message about the redoubt certificate. 
H1 ISC
stefan.ballmer@LIGO.ORG - posted 00:10, Wednesday 05 February 2014 - last comment - 00:12, Wednesday 05 February 2014(9827)
PRMI locked - ring heater set to 4W
Lisa, Stefan

To get the PRMI locking we had to turn off all 2-stage ISIs.

With the 1-day old heating of ITMY at 1.5W, and an alignment tweak, we got 6000cts of POP18. Unfortunately I am not 100% sure how much of that is alignment, and how much is heating.

At UTC 08:4:33 we turned the ring heater to 4Watt total (2Watt each).
Comments related to this report
lisa.barsotti@LIGO.ORG - 00:12, Wednesday 05 February 2014 (9828)ISC, SUS
This is a comparison ISI ON/OFF as seen by the ITMX optical lever.
References are with ISI on (blue and red), compared to ISI off (cyan and magenta).
Non-image files attached to this comment
H1 SUS (ISC, SUS)
lisa.barsotti@LIGO.ORG - posted 23:10, Tuesday 04 February 2014 - last comment - 09:15, Wednesday 05 February 2014(9826)
ITMX Optical Lever Signals
I believe the ITMX optical lever signals are calibrated in urad. If that's the case, the ITMX PIT motion right now is 0.3 urad RMS  (this is with the ISI in the configuration Rich left it in).

All the RMS comes from 0.1 - 0.7 Hz and I see 1 urad / sqrt(Hz) @ 0.5 Hz. 

This is significantly worse than ETMY/ITMY motion during the one arm test (0.2 urad/ sqrt(Hz) and 0.3 urad / sqrt(Hz) @ 0.5 Hz T1200450), and normal operations at LLO (0.4 urad RMS, and 0.05 urad/ sqrt(Hz) at 0.5 Hz - LLO log 8637).

Need to double check that I am comparing apples to apples.


Non-image files attached to this report
Comments related to this report
peter.fritschel@LIGO.ORG - 06:04, Wednesday 05 February 2014 (9829)

Don't you mean an RMS of 0.3 rad for pitch? At least, if the vertical axis is in microradians.

lisa.barsotti@LIGO.ORG - 09:15, Wednesday 05 February 2014 (9835)
Yes, bad typo, I fixed the entry.
H1 PSL
david.barker@LIGO.ORG - posted 16:47, Tuesday 04 February 2014 - last comment - 09:00, Wednesday 05 February 2014(9818)
H1 PSL down, recovery ongoing
Rick, Sheila,

at 00:16 the PSL turned off. Rick and Sheila think the power watchdog may have tripped. Sheila has started the recovery procedure.
Comments related to this report
david.barker@LIGO.ORG - 09:00, Wednesday 05 February 2014 (9832)
I forgot to specify 00:16UTC, 16:16PST.
H1 ISC
kiwamu.izumi@LIGO.ORG - posted 15:09, Thursday 30 January 2014 - last comment - 00:30, Friday 15 January 2016(9630)
REFLAIR and POPAIR PD chain check

I have been silently checking the signal chain of the REFLAIR and POPAIR RFPDs using the AM laser (a.k.a. PD calibrator) to make sure that they are functional expectedly.

Summary

The RF frequency of the AM modulation was adjusted in each measurement such that the demodulated IF signal was below 50 Hz.


Calibration of the amplitude modulation depth

We recalibrated the AM laser.

The current setting of the laser was changed recently because we opened up the current driver when we thought the laser diode had been dead in the early December. Then the laser head and its current driver were sent to Rich at Caltech for his extensive testing although the laser magically fixed itself and he didn't find anything wrong. So this was the first time for us to use the AM laser which had been fixed. Because of that mysterious event, I wanted to recalibrate the laser. First of all, Yuta and I measured the power to be 2 mW with an Ophir Vega without the attenuation filter. Then we measured the modulation depth for the amplitude modulation by using a Newfocus 1611 as a reference.

The new calibration for the amplitude modulation is:

P_am =  5.13 mW x (P_dc / 1 mW) * (1 V / V_drive)

where P_dc is the laser power at DC and V_drive is the drive voltage when it is driven by a 50 Ohm source. For example, if one puts this laser to a PD which then shows a DC laser power of say 2 mW, the AM coefficient is now 5.13 mW x ( 2 mW / 1 mW) /V_drive = 10.26 mW/V_drive.


REFLAIR_A_RF9 (S1203919)

Remarks:

The signal chain is OK. The PD response is smaller by 15% for some reason.

It seems as if the transimpedance is smaller by 15% than what had been measured at Caltech (LIGO-S1203919). The cable loss from the RFPD to the rack was measured to be 0.47 dB. Be aware that the demod gain is half of the quad I/Q demodulator because this is a dual channel demod (see E1100044). The demod conversion gain is assumed to be 10.9 according to LIGO-F1100004-v4.


REFLAIR_A_RF45 (S1203919)

Remarks:

The signal chain is healthy.

Found cable loss of about 1.5 dB. The measurements excellently agree with the loss-included expectation.


POPAIR_A_RF9 (S1300521)

Remarks:

The signal chain is healthy.

The measurement suggests that there is loss of 1 dB somewhere. I didn't measure the cable loss this time.


POPAIR_A_RF45 (S1300521)

Remarks:

The signal chain is OK. Though loss sounds a bit too high.

The measurement suggests a possible loss of 2.6 dB somewhere. I didn't measure the cable loss.


REFLAIR_B_RF27 (S1200234)

Remarks:

The signal gain is bigger than the expectation by a factor of 2.3.


REFLAIR_B_RF135 (S1200234)

Remarks:

The signal gain is bigger than the expectation by a factor of 1.5


POPAIR_B_RF18 (S1200236)

Remarks:

The signal gain is bigger than the expectation by a factor of 2.3


POPAIR_B_RF90 (S1200236)

Remarks:

The signal gain matches with the expected value, but I don't believe this.

Comments related to this report
kiwamu.izumi@LIGO.ORG - 17:16, Thursday 30 January 2014 (9678)

There was a typo:

P_am =  5.13 mW x (P_dc / 1 mW) * (1 V / V_drive)

P_am = 5.13 mW x (P_dc / 1 mW) x (V_drive / 1 V)

koji.arai@LIGO.ORG - 18:38, Thursday 30 January 2014 (9686)

For 27MHz and 136.5MHz, the RF gains are +19.8dB and +50.7dB, respectively. S1400079

 

daniel.sigg@LIGO.ORG - 22:46, Thursday 30 January 2014 (9696)

The response of the BBPD isn't really flat over all frequencies. See D1002969.

koji.arai@LIGO.ORG - 12:59, Friday 31 January 2014 (9719)

The description in D1002969 is for the initial version. (The schematics seems up-to-date.)

The latest version has the rf performance as attached.

Non-image files attached to this comment
kiwamu.izumi@LIGO.ORG - 13:11, Wednesday 05 February 2014 (9845)

This is a follow up of the calibration measurements for REFLAIR_B and POPAIR_B.

I have updated the expected signal gain for these photo detector chains using more realistic gains which Koji gave (see his comments above). Now all the values make sense. Note I did not perform any new measurements.

In the following calculations, the quantity in red represent the updated parameters.

 


REFLAIR_B_RF27(S1200234)

Remarks:

The signal chain is healthy. There is loss of 0.92 dB somewhere.

  • Expected AM at 27 MHz = 5.13 mW x (1.045 mW / 1 mW) x 0.05 V_drivepp x 0.4 A/W x 2.1 kOhm = 225 mVpp
  • Expected ADC counts = 19.8dB (S1400079-v1) x 225 mVpp x 10.9 x 2^16/40 counts/V = 39294 counts pp
  • Measured ADC counts = 35431 counts pp
    • The signal is smaller by 0.92 dB than the expected.

REFLAIR_B_RF135(S1200234)

Remarks:

The signal chain is OK. There is loss of 3.9 dB somewhere.

  • Expected AM at 135 MHz = 5.13 mW x (1.045 mW / 1 mW) x 0.0014 V_drivepp x 0.4 A/W x 1 kOhm = 3 mVpp
  • Expected ADC counts = 50.7 dB (S1400079-v1) x 3 mVpp x 10.9 x 2^16/40 counts/V = 18377 counts pp
  • Measured ADC counts = 11689 counts pp
    • The signal is smaller by 3.9 dB than the expected.

POPAIR_B_RF18 (S1200236)

Remarks:

The signal chain is healthy. The signal was bigger by 9% than the expected.

  • Expected AM at 18 MHz = 5.13 mW x (0.93 mW / 1 mW) x 0.1 V_drivepp x 0.4 A/W x 2.1 kOhm = 401 mVpp
  • Expected ADC counts = 401 mVpp x 10.9 x 2^16/40 counts /V = 7157 counts pp
  • Measured ADC counts = 7803 counts pp
    • The signal is greater by 9 % than the expected.

POPAIR_B_RF90 (S1200236)

Remarks:

The signal chain is healthy. There is loss of 1.2 dB somewhere.

  • Expected AM at 90 MHz = 5.13 mW x (0.93 mW / 1 mW) x 0.1 V_drivepp x 0.4 A/W x 1.2 kOhm = 229 mVpp
  • Expected ADC counts = 229 mVpp x 10.9 x 2^16/40 counts/V = 4090 counts pp
  • Measured ADC counts = 3549 counts pp
    • This is smaller than the expected by 1.2 dB
evan.hall@LIGO.ORG - 14:08, Wednesday 06 January 2016 (24728)

From these measurements, we can use POPAIR to infer the calibration for POP.

I looked at a recent lock acquisition while the interferometer was trying to engage the outer ISS loop. The LSC is relatively stable during this time, and the POP beam diverter is still open.

After undoing whitening gain and digital gain (2 ct/ct for POPAIR9/45, and 32 ct/ct for POP9/45), we find the following TFs:

  • POP9I/POPAIR9I = 0.19 ct/ct
  • POP45Q/POPAIR45Q = 0.21 ct/ct

This implies calibrations of 1.7×106 ct/W for POP9 and 1.8×106 ct/W for POP45.

Images attached to this comment
evan.hall@LIGO.ORG - 00:30, Friday 15 January 2016 (24959)

There's a factor of 4 difference in power between POP and POPAIR (17 mW versus 68 mW with a PSL power of 23 W), so the values I gave above are off by a factor of 4. The demod gains should be 6.4×106 ct/W for POP9 and 7.2×106 ct/W for POP45.

Displaying reports 67601-67620 of 77151.Go to page Start 3377 3378 3379 3380 3381 3382 3383 3384 3385 End